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Editorials

This issue of the Transactions on Intelligent Welding Manufacturing (TIWM) is
also a collection in part selected from the high-quality contributions recommended
by “The 2020 International Conference on Robotic Welding Intelligence and
Automation (RWIA’2020) and the 2021 International Workshop on Intelligentized
Welding Manufacturing (IWIWM’2021)”. It includes two feature articles and three
research papers.

The first featured article in this issue “Defect Detection and Process Monitoring
for Wire Arc Additive Manufacturing using Machine Learning” is contributed by
Haochen Mu Zhonghao Chen and Fengyang He from University of Wollongong.
This paper provides an in-depth review of process monitoring approaches suitable
for a Wire Arc Additive Manufacturing (WAAM) system related to defect detec-
tions. Particular focus is given to the machine learning (ML)-based monitoring
systems and how they could be implemented into the WAAM process to improve
the detecting accuracy reliability and efficiency.

The second featured article in this issue “Research Evolution on Intelligentized
K-TIG Welding” is contributed by Yanxin Cui Yonghua Shi from South China
University of Technology. This paper introduces the intellectualization and
improvement progress of the K-TIG welding. Many sensing techniques such as arc
spectroscopic analysis and multi-information fusion are elucidated with great
potential for identifying penetration states and analyzing dynamic K-TIG welding
processes. The first research article “Segmentation-based Automatic Recognition
for Weld Defect in Radiographic Testing Image” is contributed by Ming Zhu
Xiaohua Chen and Hulong Zhang all from Lanzhou University of Technology. This
paper proposes a defect recognition algorithm based on image segmentation which
was divided into three stages: image preprocessing, weld segmentation, and defect
segmentation. The results of the study show that the extracted parameters can reflect
the shape features of actual defects.

The second research paper entitled “MLD Classification Model of Visual
Features of Multi-layer and Multi-pass Molten Pool during Robotic MAG Welding
of Medium-thick Steel Plates” is contributed by Hao Zhou Shanben Chen and
Huabin Chen from Shanghai Jiao Tong University. The Geodesic active contour

v



model (GAC) method is used for the molten pool image (MPI) in the multi-layer
and multi-pass welding process, and the MLD classification model is established.
The experimental results show that the image segmentation method based on GAC
can effectively obtain the edge of MAG weld pool. The characteristics of weld pool
are exactly corresponding to the seven types of multi-layer and multi-pass welding.

The third research paper titled “Deep Learning Based Robot Detection and
Grinding System for Veneer Defects” is contributed by a research team from East
China University of Science and Technology. This paper proposes the method
using industrial robot combined with vision detection system. Based on the object
detection network RetinaNet, the detection model is trained to detect the defects of
different categories in the whole veneer. The pixel coordinates will be transformed
into robot coordinates, and PLC uses these coordinate values to control the robot for
grinding. The results show that the model has high recognition accuracy in the
tested veneer data.

This issue of TIWM shows the new perspectives and developments in the field
of intelligent welding research as well as the topics related to the RWIA’2020 and
IWIWM’2021 conferences. The publication of this issue will certainly give readers
new inspiration as we always hope so.

Yuming Zhang
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Defect Detection and Process Monitoring
for Wire Arc Additive Manufacturing Using

Machine Learning

Haochen Mu, Zhonghao Chen, Fengyang He, Yuxing Li, Chunyang Xia,
Philip Commins, and Zengxi Pan(B)

School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of
Wollongong, Wollongong, NSW 2522, Australia

zengxi@uow.edu.au

Abstract. Wire Arc Additive Manufacturing (WAAM) is a promising manufac-
turing technology that has been used to build medium to larger-sized components.
The recent progress of Artificial Intelligence (AI) technology has led to Machine
Learning (ML) algorithms being widely implemented for modeling, control, mon-
itoring, and simulation processes in WAAM. However, current defect detection
systems are limited due to the types of detectable defects, and a real-time micro-
defect detection system is yet to be developed. This paper aims to provide an
in-depth review of process monitoring approaches suitable for a WAAM system
related to defect detections. Particular focus is given to the ML-based monitor-
ing systems, and how they could be implemented into the WAAM process to
improve the detecting accuracy, reliability, and efficiency. The paper concludes
by discussing the current challenges and future work for developing a real-time
monitoring system.

Keywords: WAAM · Additive manufacturing · Defect detection · Process
monitoring ·Machine learning

1 Introduction

Additive Manufacturing (AM), which is also known as the 3D printing technique, is an
emerging manufacturing technology that usually fabricates parts layer-by-layer. As a
sub-category of metallic AM process, Wire Arc Additive Manufacturing (WAAM) is a
wire-feed system that utilizes metal wire and electrical arc as the deposition material and
heating source, respectively [1] (as illustrated in Fig. 1.).WAAM is amore cost-effective
manufacturing technique that features a higher buy-to-fly ratio, lower equipment costs
compared with other wire-feed, powder-feed, or powder-bed metallic AM systems [2].
Additionally, being capable of manufacturing components with full density is also a
major advantage for structural applications [3].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Chen et al. (Eds.): RWIA 2020, TRINWM, pp. 3–22, 2022.
https://doi.org/10.1007/978-981-19-3902-0_1
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Fig. 1. Schematic of the WAAM system [4].

The research history of WAAM can be traced back to 2010 and presents an expo-
nential growth in research interest since 2016, as shown in Fig. 2. The development of
WAAMcan be classified into three stages. In stage one (from 2010 to 2013), the research
objectives were highly targeted to the welding technology, including material proper-
ties [5], deposition modeling [6], and process analysis [7]. In stage two (from 2014 to
2018), automation has become a focused research topic for WAAM. More technologies
and areas (i.e., control theory [8], modeling [9], monitoring [10], and simulation [11])
were involved to develop an automatic WAAM system. In stage three (from 2019 till
present), as the Artificial Intelligence (AI) revolution has impacted the structure of the
modern industry, applications of ML and AI algorithms have a boosted development in
WAAM. So far,WAAMhas beenwidely applied to themanufacture of large components
in aerospace [12], shipbuilding [13], and defense industries.

Several issues remain and inhibit WAAM from widespread commercial adoptions.
Multiple types of defects are commonly found in WAAM, including geometric inac-
curacy, residual stress, porosity. Traditional approaches have been developed to detect
these defects. For example, IR camera [14], eddy current [15], ultrasonic [16, 17], x-ray
[18, 19], microscopy [20], etc. Those research efforts provide valuable reference and
inspiration for future work, however, the processing latency and low cost-efficiency are
still limiting the online monitoring of WAAM.

ML is an emerging technology and is commonly utilized for real-time data process-
ing. Compared to traditional physics-based or data-based models, ML-based models can
significantly accelerate the processing speed [21]. Therefore, this study aims to provide
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Fig. 2. Publication trend and percentage of publications in research topics of WAAM.

inspiration, knowledge, and strategy for a defect detecting and process monitoring sys-
temusingML.Additionally,ML applications in othermetallicAMmonitoring processes
are also introduced and could be adopted in the WAAM process.

This paper is organized as follows: Sect. 2 reviews the defects in WAAM processes.
Section 3 introduces the current applications ofML in theWAAMsystem frommodeling,
control, and simulation aspects. Section 4 reviews the state-of-the-art ML-based defect
detection approaches in AM. Section 5 summarizes the challenges and future work for
a monitoring system for WAAM. Section 6 concludes this paper.

2 Defects in WAAM Systems

The common defects in WAAM include cracks, delamination, porosity, deformation,
residual stress, oxidation, and poor surface finish.As shown in Fig. 3., the types of defects
are strongly correlated to the deposition material [22]. In this section, the generation,
influence, and control strategies of these common defects will be discussed.
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Fig. 3. The correlation between deposition materials and defects in WAAM processes [22].

2.1 Crack and Delamination

Crack and delamination are common defects that are present in all AM manufactured
products. InWAAM, cracks can be categorized as solidification cracks and grain bound-
ary cracks. Solidification cracks are mainly caused by the obstruction of solidified grain
flowor the high strain in themolten pool,while grain boundary cracks are often generated
by the differences between boundary morphology and potential precipitate formation
or dissolution. The expansion of cracks is uncontrollable and can result in fractures of
the component. To solve this, current technical solutions include ultrasonic vibration,
electromagnetic stirring, magnetic arc oscillation, and inoculation [23].

Delamination is generally caused by the insufficient re-melting of the previously
deposited layer or the incomplete melting of the currently deposited layer. However, this
macro defect cannot be repaired by post-processing treatments, which eventually leads
to a lack of fusion. Thus, pre-processing treatments need to be considered before each
layer’s deposition process to avoid delamination, such as preheating [22]. Examples of
cracks and delamination are shown in Fig. 4.
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Fig. 4. Examples of cracks [24] and delamination [15].

2.2 Porosity

Porosity in AM can be classified as raw material-induced pores and process-induced
pores. During the deposition, the moisture, oil, and other hydrocarbons on the surface of
the feed wire can be combined into the molten pool, which finally will lead to porosity.
The process-induced pores are caused by the dramatic change of temperature field and
incorrect or unstable process parameters, such as metal transfer mode and heat input
[25]. Porosity can damage the manufactured part and result in low mechanical strength.
Besides, the accumulation of pores can lead to micro-cracks and macro-voids, as shown
in Fig. 5.

To control porosity, it is important to clean the feedstock and deposited layers.
Adjusting process parameters such as shielding gas flow, metal transfer mode, and heat
input is also found to be helpful. For the post-processing treatments, the inter-layer
rolling and re-melting technology can also decrease the presence of pores [23].

Fig. 5. Examples of porosity [26] and voids [27].



8 H. Mu et al.

2.3 Deformation and Residual Stress

Deformation and residual stress are inherent defects that cannot be avoided. Various
deformation types exist in WAAM, including longitudinal and transverse shrinkage,
bending distortion, angular distortion, and rotational distortion. During repeated melting
and cooling processes, deformation and residual stress are generated and accumulated
due to the thermal expansion and shrinkage of the component. When the external load
on the baseplate is removed after finishing the deposition, the residual stress remains and
will significantly influence the fatigue performance, especially for thin-wall structures
[22]. Current approaches to control the deformation and residual stress include adjusting
path-planning, depositing additional material, post-process milling, vertical and side
rolling, intermediate stress relief anneal, and active interpass cooling [23]. An example
of thermal distortion is shown in Fig. 6.

Fig. 6. Example of thermal distortion [28].

2.4 Oxidation and Poor Surface Finish

Oxidation is a significant defect, however, it receives less attention than porosity and
cracks. The formation of oxidation is strongly related to the properties of the deposition
material. For a highly reactive element that has a strong binding affinity for oxygen,
such as aluminum, it is impossible to avoid oxidation during welding. The high melting
temperature of oxidation film on the surface of the deposited bead can affect the welding
arc, eventually leading to pores, cracks, delamination, andpoor surfacefinish, as shown in
Fig. 7. Oxidation can be reduced by controlling the shielding gas flow. Since an increase
in gas velocity can increase themixing of the shielding gas with the atmosphere, a proper
range of gas flow must be controlled for different materials [29].
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Fig. 7. High-speed images of the processing zone in the (a) first and (b) second layer which show
the white surface oxidation (marked orange), the arc (marked yellow), and the wire (marked blue)
[29].

3 Machine Learning Applications in WAAM

MLis a data-basedmodeling technology that aims to reveal relationships in a systemwith
unknown physics. Typically, ML can be categorized into 4 groups: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning [30]. The
difference between these groups is whether the training dataset is labeled. For supervised
learning, each trainingpoint contains one label, thus themodel is designed to predict input
features for desired outputs [31]. In contrast, training points in an unsupervised learning
algorithm do not contain any label, so this type of model is often used to detect hidden or
unknown relationships among the data [32]. The semi-supervised learning algorithm is
a combination of both supervised learning and unsupervised learning. The presence of a
small set of labeled data can significantly improve the detecting performance [33]. As for
reinforcement learning, it iteratively gains experience by interacting with the monitoring
environment, thus the optimal solution can be achieved with hundreds of iterations [34].
As shown in Fig. 8., ML applications have covered many areas in WAAM, including
modeling, control, simulation, and detection. In this section, the ML applications in
those aspects will be reviewed.
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Fig. 8. ML applications in WAAM.

3.1 Modeling

Modeling is a fundamental application of ML. In WAAM, modeling tasks include geo-
metrical models, physical models, and process models. The most frequently used model
is the geometrical model, which is utilized to predict the bead geometry based on the
welding inputs. For example, Tang et al. used a deep learning algorithm to model the
bead geometry [35]. Barrionuevo et al. compared the geometrical modeling accuracy of
differentML-based regressionmodels [36]. Yaseer and Chen implemented RandomFor-
est (RF) and Multilayer Perceptron (MLP) to model the surface roughness of deposited
bead based on welding parameters [37]. The physical model is an important application
as well because it can effectively reveal the welding physics or the product properties.
For example, Wu et al. utilized RF and Artificial Neural Network (ANN) to model the
residual stress and analyze the significance of input influential variables [38]. Maurya
et al. used the ANNmodel to correlate the hot deformation process parameters and flow
stress [39].

Process models are used to generate process parameters based on existing welding
examples. For example, Hu et al. combined genetic algorithm (GA) and forward ANN
(FANN) to predict the welding parameters based on desired bead geometry [40]. Com-
pared to the traditional modeling technologies such as physics-based models [41] and
regressive models [42], ML-based models have the benefits of accuracy, reliability, and
flexibility. The model accuracy and reliability are improved because of the support of
a relatively large training dataset, and the flexibility is improved because of the ML’s
ability that can learn from iterations.

3.2 Control

The ML-based controller is an advanced application that usually is combined with ML-
based models. Similar to conventional controllers, ML-based controllers are generally
used to achieve geometrical control based on single or multiple welding inputs. For
example, Dharmawan et al. proposed a reinforcement learning framework to achieve



Defect Detection and Process Monitoring 11

in-situ geometric control and model learning for multi-layer and multi-bead processes
[43]. Xia et al. developed an ML-based model-free adaptive iterative learning control to
solve the geometrical inaccuracy of thin-wall structures [44]. Kulkarni et al. controlled
the deposition speed based on welding circumstances using an unsupervised learning
algorithm [45]. Wang et al. used an EPNet algorithm to control the bead width based on
the real-time weld pool image [46]. Through all these applications, it has been proved
that the ML-based controller greatly improves the control adaptiveness and flexibility
compared to traditional controllers (for example PID [47] and MPC [48]).

3.3 Simulation

The simulation process can be regarded as a combination of model and controller, where
the controller generates the welding inputs, while the model predicts the virtual feed-
backs based on the outputs from the controller, thus the future system can be predicted.
For example, Nalajam andVaradarajan developed a simulation system based on the Con-
volutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to predict
the melt pool temperature [49]. Ding et al. built a backward model using the Support
Vector Machine (SVM) to predict the bead geometries of the whole deposition process
[50].

ML plays an important role in the simulation process. Though traditional physics-
based simulations can achieve higher accuracy, they are significantly time-consuming
and cost-sensitive. In contrast, ML-based simulations offer a more flexible solution to
adjust the balance between time and accuracy depending on the simulation environment.
Furthermore, the combination of ML and physics-based models [51] can significantly
reduce processing time while maintaining simulation accuracy.

4 ML-Based Monitoring Systems

To date, defect detection algorithm plays an important role in the monitoring of AM
processes. For WAAM, samples from the deposition part are usually required for tradi-
tional defect detection approaches, such as x-ray [18, 19] and microscopy [20], which
are destructive to the manufactured part. To develop an online monitoring system, sen-
sors used in nondestructive detecting approaches, such as IR camera [14], eddy current
[15], and ultrasonic [16, 17], are generally considered. In this section, defect detec-
tion approaches using ML algorithms will be introduced and classified according to the
sensor used.

4.1 Defect Detection Using Welding Electrical Signal

The voltage and current waveforms of the welding process are important because they
imply heat input and welding physics, though they are not often collected as geometric
data. In the research from Li et al. [52], an incremental learning model was developed
to detect defects using electrical signals. The welding electrical data are collected by
voltage and current sensors. The collected signals are then sent to the pre-processing
procedure, where the features are extracted and the noise is reduced, as shown in Fig. 9.
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Fig. 9. Electrical signal pre-processing (a) data acquisition. (b) raw data of a single weld bead.
(c) rolling windows split data into data pieces and then (d) each data piece will be extracted to 24
features as a representation of a data window [52].

Finally, to simplify the overall statistical features, a score evaluation algorithm is used
to summarize and provide overall scores, which are used as the input of the incremental
learning model.

For the model training process, an SVM is used to identify the defects. The goal is
to obtain a linear score function of the SVM, and the function parameters are solved by
the Stochastic Gradient Descent (SGD) optimizer through iterations during training. Li
et al. achieved incremental learning by continuously feeding new data into the partially
trained model, thus the model will be continually updated using the knowledge acquired
in previous runs. Consequently, the user only needs to manually identify a relatively
small dataset of defects during training (as shown in Fig. 10.) and the defects can be
automatically detected during welding. The feasibility of the model is evaluated based
on the three measures: recall, precision, and F1 score, while the higher value refers to
better performance.

The result of practical experiments presents the high reliability and precision of
this incremental learning-based in-situ defect detection approach. The F1 score reaches
above 90% for all predicting tasks (that is, normal, arc on, arc off, and weld pool shift).
Another advantage of this approach is flexibility: the training of the incremental learning
model is based on a relatively small dataset, thus it is possible to detect more defects
simultaneously, additionally, more cost-effective for rare materials.
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Fig. 10. The GUI that used for training the SVM model [52].

The unsupervised ML technology also presents a remarkable performance in the
research from Reisch et al. [53]. The monitoring system detects defects by estimat-
ing the error likelihood, which is calculated based on the difference between predicted
(reconstructed) inputs and in-situ monitored input signals. Generally, differentMLmod-
els are selected based on different inputs. In this example, LSTM and one-dimensional
convolutional (Conv1D) models are utilized for current and voltage predictions, respec-
tively. Themodel parameters are optimizedwithBayesianHyperparameterOptimization
(HPO), and the training process is completed using unlabelled data of a previous additive
layerwithout forced anomalies. During themonitoring process, the predicted current and
voltage data are compared with original data, and the prediction error is used to detect
defects, as shown in Fig. 11. Results from practical experiments illustrate a remarkable
detecting delay, which is less than 30ms, and a reliable loss, which is less than 0.011 on
average.
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Fig. 11. Normalized not synchronized current and voltage time series (blue), their predictions
(orange), and the resulting error distances (green) [53].

4.2 Defect Detection Using Computer Vision

In recent years, the images of the welding molten pool are monitored to detect defects.
With the development of ML and image processing techniques, online image-based
defect detection approaches are preferred due to their high reliability and flexibility. For
example, using a CCD camera to capture the real-time formation of one layer’s depo-
sition, then feed to neural networks (for example, YOLOv3 model, PredNet [54], and
regression network [55]) to detect and classify the defects. For the training phase of the
model, the images with defects are manually collected and labeled, and hyperparameter
tuning is utilized to find the best performance model under different anchor settings.
Results (as shown in Fig. 12.) present the practical performance of this approach. This
online monitoring approach can detect surface defects instantly and provide theoretical
references and inspiration for the research of online repair processes.

Fig. 12. (a)–(b): path planning, neighboring contours are welded in clockwise and anticlockwise
directions; (c): real photo after 8 layers depositions; (d)–(f): Different detection results on different
layers.
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In another example, He et al. [20] developed a detection and classification system
to monitor the surface defects using a Cost-Sensitive Convolutional Neural Network
(CSCNN). The surface information is captured based on the Magneto-Optical Imaging
(MOI) technique. Compared to the CCD camera, MOI can effectively detect defects on
both surface and subsurface, while beingmore costly. The training of CSCNN is based on
the original Magneto-Optical (MO) images, and the gradient descent training method is
used to calculate themodel parameters. Thewhole structure of the CSCNN classification
model is shown in Fig. 13. For practical experiments, the prediction accuracy is above
85% when classifying different defects and notably reaches 97% when identifying no
defect.

Fig. 13. Structure of the CSCNN classification model [20].

As for the unsupervised learning applications, an autoencoder is also utilized to detect
anomalies in thework of Reisch et al. [53]. Similar to the unsupervised learning approach
introduced in Sect. 4.2, this approach calculates the reconstruction error between the
autoencoder reconstructed image, and the corresponding original image taken by the
welding camera, as shown in Fig. 14. The training dataset only contains healthy data
thus when an anomaly occurred, the autoencoder needs to reconstruct a new image,
resulting in a worse fit. Results present a reliable detecting accuracy (average loss less
than 0.002) with a relatively high predicting delay (more than 340 ms).

The sensor used for the defect detection algorithm is not limited to the cameras. Nala-
jam et al.[56] developed an offline porosity detection system based on microstructural
images. The optical micrographs are taken by optical microscopy first, then processed by
Gabor filters for feature extraction. Three classifiers are tested and compared in this app-
roach: k-means, SVM, and RF. Results show that RF presents the highest classification
accuracy of 99.49%, followed by SVM with an accuracy of 98.75%. One drawback of
this approach is destructive testing, nevertheless, the high performance ofML algorithms
proves to make ML a feasible technique for real-time porosity analysis.

4.3 Defect Detection Using the 3D Laser Scanner

As geometric inaccuracy is the most significant and commercial defect that appears
in metallic AM processes, a straightforward detecting method is through geometric
scanners. For example, Huang’s research team [57] developed a 3D laser profilometer
inspection (3D-LPI) system based on real-time feedback from the laser scanner. The
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Fig. 14. Original/Reconstructed images of welding camera and corresponding reconstruction
error; images of the abnormal process marked in red [53].

monitoring process can be divided into the following procedures: scanning, point cloud
pre-processing, and detection.

During the manufacturing process, the deposited surface is scanned after finishing
one layer of deposition. Then, the raw point cloud is generated and sent for the pre-
processing step. The pre-processing algorithm aims to reduce noise, extract the deposited
part, calculate the heightmap, and convert the geometric data into one topography image
for each layer, as shown in Fig. 15. The detection process aims to detect and classify sur-
face defects. In their work, 12 features (intensity, maximum, minimum, contrast, mean,
standard deviation, entropy, flatness, homogeneity, skewness, distance to boundary, and
Laplace filtered) and 4 labels (normal, bulgy, dented, and pores) are used for training
the SVM model.

Fig. 15. The measurement results (a) The layerwise point cloud of the deposited object (b)
layerwise topography image in pseudocolor [57].

For the experiment results, the proposed 3D-LPI system can effectively identify the
labeled defects, as shown in Fig. 16. However, the resolution is the main hindrance
to detecting small defects such as pores. To conclude, the proposed 3D-LPI system is
capable of locating and identifying the surface defects during the deposition process of
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medium to large components. Additionally, the balance between resolution and detecting
accuracy is one of the main concerns when designing such a system.

Fig. 16. Defects detection results, the first row showed the classification results of pixels, the
second row showed identification results of defects on the pseudocolor topography [57].

4.4 Other Defect Detection Methods

Despite traditional sensors, some research efforts focus on investigating the combination
of defect detection and new sensors. For example, in the online monitoring system
proposed bySurovi et al. [58], acoustic sensors are used for detecting irregularities during
the deposition process. The author provided three acoustic feature-based frameworks:
Principal Component Analysis (PCA) + K-Nearest Neighbors (KNN), Mel Frequency
Cepstral Coefficients (MFCC) + Neural Network (NN), and Mel Frequency Cepstral
Coefficients (MFCC) + CNN. Results show that the combination of PCA and KNN
can perform the best detecting accuracy. This attempt can provide theoretical basics and
inspiration for the sensor used in monitoring systems.
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5 Challenges and Future Work

In this section, the current challenges and futurework for developing amonitoring system
for WAAM will be summarized and categorized into two aspects: ML-based algorithm
performance and sensor fusion.

5.1 Accuracy, Flexibility, and Efficiency of Detection

The main concern for developing a monitoring system is the ML-based algorithm per-
formance, which can be categorized as detection accuracy, flexibility, and efficiency.
Accuracy refers to whether different defects can be identified during the manufacturing
process. Flexibility refers to whether defects can be detected in various welding envi-
ronments. Efficiency refers to the time and cost of the detection process. During the
real-time monitoring process, various defects need to be detected simultaneously while
minimizing the detection delay. Consequently, selecting a proper training dataset and
ML-based model, as well as designing the model iteration process, requires more future
work.

5.2 Sensor Integration and Signal Data Fusion

Sensor fusion can present a better understanding of a physical system through combining
multiple data sources, thus providing more consistent, accurate, and reliable feedback
data. InWAAM, various sensors can be integrated (e.g., thermal, geometrical, voltage &
current) to create a multidimensional dataset for describing the welding process. Sen-
sors should be integrated into modules to solve specific detecting tasks. For example,
the detection of oxidation is necessary for the welding with titanium wire, while less
important for steel and nickel alloy wires. However, ML-based data fusion algorithms
are compulsory to establish the connection between detection modules.

Another research problem for sensor fusion is that most in-situ sensors cannot mon-
itor the microstructures of the deposited part, and the welding physics such as residual
stress. Therefore, using ML to find the relationship between microstructure, welding
physics and those detectable signals (e.g., arc, heat, and molten pool) is a necessary step
to sensor fusion, which can be a future research interest.

6 Conclusion

In this study, a comprehensive review of research efforts in defects, ML applications,
and ML-based defect detecting approaches in WAAM were provided. Common defects
include cracks, delamination, porosity, deformation, residual stress, oxidation, and sur-
face finish, then the formation, impact, and solution of these defects were reviewed. The
background of ML applications in modeling, control, and simulation aspects was intro-
duced, then the state-of-the-art ML-based defect detection approaches are discussed in
detail and categorized by sensor sources. Challenges and future work are discussed from
two aspects: ML-based algorithm performance and sensor fusion.
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Abstract. K-TIG welding is a novel and high efficiency deep penetration weld-
ing technology, attracting researchers since K-TIG welding was invented in 1997.
This paper reviewed the literatures with respect to the K-TIG welding from 1997
to 2021. The importance of the literatures collected from the Web of Science
Core Collection were sorted by local citation score(LCS). The intellectualiza-
tion and improvement progress of the K-TIG welding were introduced, including
seam tracking, penetration recognition, investigation on dynamic K-TIG weld-
ing process, arc pressure measurement, and enlarging the operating window.
Many sensing technologies including arc spectrum analysis andmulti-information
fusion have great potential in recognizing the penetration status and analyzing the
dynamic K-TIG welding process. The exertion of external magnetic field can
change the arc shape and improve the mechanical properties of the weld joint.
There is still a long way to go to intelligentize and improve the K-TIG welding.

Keywords: K-TIG welding · LCS · Seam tracking · Penetration recognition ·
Dynamic welding process · Arc pressure · External magnetic field

1 Introduction

Welding is a key technology in modern manufacturing processes, which has an urgent
demand of becoming robotic, automotive, and intelligent to substitute for the tradi-
tional, time consuming, and low efficiency handworked craft [1]. The mid-thick plates
(4.5–25 mm) welding is a difficult and sometimes complex process, which has wide
applications in marine ships, pipeline manufacturing, and large-scale pressure vessel.
To handle thiswelding condition, penetrativewelding technologies, including plasma arc
welding(PAW), laser beam welding(LBW), electric beam welding(EBW), and keyhole
tungsten inert gas welding(K-TIG), have been developed. Comparing to other penetra-
tive technologies, K-TIG welding, which is capable of low cost, edge preparation and
filler wire avoidable, is an ideal method to join the mid-thick plates.

According to the vivid exposition made by Zhang et al., welding process can be
regarded as an optimization problem shown in Eq. (1) [2]. P is the semidefinite positive
function, representing the total cost of the given welding problem. κ is the invariant
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welding conditions or parameters.� is the variable vector, representing the controllable
welding parameters. o is the requiredwelding quality, such as the geometry ofweld seam,
the microstructure of the weld metal, and the residual stress, etc. o(� /κ) describes the
relationship between the output or the required welding quality o and the controllable
weldingparameters� under given conditionsκ. The result of the optimizationproblem is
denoted as Eq. (2), where κ∗ is the nominal conditions, and� ∗ is the derived controllable
parameters under the nominal conditions κ∗. To solve the mid-thick plates welding
problem described by Eq. (1), there are two ways to go. One is to optimize the welding
parameters under the given welding technology, i.e., just optimize the κ and � instead
of changing the function o(� /κ). For example, the mid-thick plates can be joint together
by multi-pass welding through traditional welding technology. The other way is to find
a suitable and novel welding technology o(� /κ) to meet the requirement o. The K-TIG
welding is such an appropriate and novel technology for joining mid-thick plates.{

min
�(L)≤�≤�(U )

P(o(�/κ))

o(L) ≤ o(�/κ) ≤ o(L)
(1)

{
P(o(� ∗/κ∗)) = min

�(L)≤�≤�(U )
P(o(�/κ∗))

o(L) ≤ o(�/κ∗) ≤ o(L)
(2)

However, K-TIG welding is a complex physical and chemical process with high
coupling of acoustic, optical, thermal, mechanical, magnetic and electrical fields. The
operating window is narrow and the penetration ability is sensitive to the height and
angle of the tungsten needle, welding current, and welding speed [3]. This fact results
in a common phenomenon that in the practical K-TIG welding process, there is a bias
�κ between the practical welding conditions κ and the nominal conditions κ∗, which
lead to the difference between the actually obtained output o(� ∗/�κ + κ∗) and the
optimized and required ideal output o∗(� ∗/κ∗). If the weld torch had a deviation from
the weld seam, this deviation �κ can be directly measured through vision sensing and
can be compensated, which is the weld seam tracking problem. However, there are
many parameters cannot be measured or even if they can be measured, they cannot be
measured online in real time. For example, the tungsten needle could be burn out and
dull under some extreme working conditions, causing the erosion of the penetration
ability. Under this condition, the angle of tungsten needle is hard to measure in real-
time, and thus the bias �κ cannot be compensated. Therefore, as a high efficiency
deep penetration welding technology, the main weld defect of K-TIG welding is the
penetration defect, which means the penetration o is interfered from the dull tungsten,
deformed plates, and changed plates gap,�κ, resulting in the lack of penetration or burn
through. When the �κ is hard to measure or even cannot be measured, the controllable
welding parameters � should be compensated �� , making the output o in Eq. (3)
as close as possible to the required ideal output o∗. In actual K-TIG welding practice,
the welding parameters in time k can be adjusted as shown in Eq. (4), according to
the previous adjusted welding parameters �� (k−1) in time k-1. This process can be
iterated until the bias o-o* as small as possible. Some control algorithms like model
predictive control(MPC) can handle this process to ensure the whole K-TIG welding
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process in the completely penetrated status. The most difficult point during the iteration
process is the output o cannot be directly measured. Therefore, we need to find out the
relationship between the directly measurable physical information like arc sound, arc
electrical signals, and vision information, etc., and the output o. Thus the output o can
be indirectly measured. This needs the deeper knowledge and insight into the K-TIG
welding process.

min
��

P
(
o
(
� = � ∗ + ��/� ∗, κ∗,�κ

))
(3)

��(k) = ��(k−1) + γ
(
o(k) − o∗) (4)

Therefore, this paper aims to introduce the research evolution on intelligentized K-
TIG welding, especially on measuring the output o through kinds of sensing technology
combining with machine learning technology and the attempts for improving the K-
TIG welding. Section 2 introduced the development progress of the K-TIG welding and
reviewed the literatures collected from the Web of Science Core Collection. Section 3
reviewed the intellectualization of K-TIG welding, including the seam tracking and
penetration recognition. Methods tried to improve the K-TIG welding were presented
in Section 4. Finally, conclusions and some research issues were drawn in Section 5.

2 The Development Progress of K-TIG Welding

In 1997, based on the traditional TIG welding, a novel high efficiency deep penetra-
tion welding technology characterized by the noticeable keyhole, K-TIG welding, was
invented by Commonwealth Scientific and Industrial Research Organisation (CSIRO)
in Australia. Dr. Jarvis, whose PhD thesis is majoring in the K-TIG welding, lays a solid
foundation of the theory and application of the K-TIG welding [4]. Comparing to the
traditional TIG welding, the K-TIG welding has three distinct differences:

1. When the penetrative process is stable, there is a distinct keyhole on the backside of
the weld specimen.

2. The welding current is high. Commonly, the welding current is set at 400–600 A.
3. The tungsten electrode is strongly water-cooled.

The high welding current and strongly water-cooled tungsten needle are responsible
for the penetrative process. The higherwelding current is, the bigger energy input obtains,
thus themore intense self-inducedmagnetic field in the arc area induces. The free burning
arc is radially contracted under the Lorentz force, resulting in the increase of the energy
density and arc pressure. The strong water-cooling can reduce the burning loss of the
tungsten electrode and extend its service life. Meanwhile, the cathode electron emitting
area is compressed, further increasing the current density and enhancing the pinch effect.
Therefore, the K-TIG welding is capable of deep penetration welding.

From 1997, there are many works focusing on the K-TIG welding [3–48]. We ana-
lyzed 33 literatures in the Web of Science Core Collection [6–24, 26, 27, 29–35, 37,
38, 46–48]. As shown in Fig. 1, K-TIG welding aroused many researchers’ interests
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Fig. 1. The literatures analysis of K-TIG welding
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from 2017. The first three authors who contributed the most literatures are Shi YH, Liu
ZM, and Luo Z. More than 50% of the literatures were published in INTERNATIONAL
JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, JOURNAL OF
MANUFACTUR- INGPROCESSES, and JOURNALOFMATERIALSPROCESSING
TECHNOLOGY.

Fig. 2. The literatures of K-TIG welding classified by research directions

Figure 2 shows the research directions of the counted literatures. Fourteen literatures
investigated the application of the K-TIG welding on different metal materials, and
analyzed the microstructure and mechanical properties of the weld specimen. Eleven
literatures analyzed the welding process especially the keyhole dynamic behaviors, and
tried kinds of methods to widen the operating window and improve the K-TIG welding.
Only eight literatures reported the intellectualization of the K-TIG welding, including
the penetration recognition and tracking the weld seam. The historiographs of all the
literatures are drawn in Fig. 3. These literatures are sorted by Local Citation Score(LCS),
which is the number of citations to the paper from within the collection. The more LCS
a paper gets, the more important the paper is, and the bigger circle in Fig. 3 is. Though
the most influential paper should be the thesis written by Dr. Jarvis [4], it is not collected
in theWeb of Science Core Collection. Therefore, the most important literature in Fig. 3
is the one published in 2001, which was also authored by Dr. Jarvis [11]. Recently,
literatures [30, 33], and [19] have the most citations, and all of them are reporting the
application of the K-TIG welding.

The improvement and intellectualization are more important. One is to improve the
o(� /κ), providing a novel way to optimize Eq. (1). The other is to obtain the output o
and support for optimizing the welding parameters �� . Therefore, the following parts
are reviewing the related works about improvement and intellectualization of K-TIG
welding.

3 The Intellectualization of K-TIG Welding

The intellectualization of K-TIG welding is to make the output o as close as possible
to the required output o∗. As a deep penetration welding technology, K-TIG welding
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Fig. 3. The historiographs of the K-TIG welding literatures

hardly occurs the slag inclusion, porosity and crack. Themain research objects of K-TIG
welding are seam tracking and penetration recognition.

3.1 The Research of Seam Tracking in K-TIG Welding

All the works to realize seam tracking utilized the vision sensing technology. However,
due to the high welding current, the dynamic range in a captured image containing both
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arc region

transition region

seam region

Fig. 4. K-means clustering area division results [39]

the arc area and the seam area is so wide, bringing difficulties to the image processing. To
overcome this problem, Gu et al. [26, 37] utilized a high dynamic range (HDR) CMOS
camera to capture the vision information. To find the weld seam and weld pool ROIs, Gu
et al. proposed a HOG-SVM based algorithm and the error of the proposed weld seam
tracking algorithm is only 0.04 mm. Similarly, Liu [41] also utilized the HDR camera.
Liu proposed an algorithm in combination with the K-Means, wavelet transform, and
random forests to solve the core problem in weld seam tracking, which is the edge
detection problem. Considering the real-time performance of the proposed algorithm,
Liu performed a parallel optimization of the proposed edge detection algorithm on
GPU using CUDA programming. The optimized algorithm ran 123 times faster than
that on CPU. The final seam tracking system is able to track the straight-line seam,
the polyline seam, and the curve seam, while the error can be controlled within 0.12
mm, 1.65 mm, and 1.76 mm, respectively. The ROI extraction is useful for solving
the seam tracking problem. To extract the arc area and seam area ROIs, Zhang et al.
[39] proposed the segmentation algorithm based on K-Means clustering. The captured
image can be segmented into arc region, transition region, and seam region, as shown
in Fig. 4, which reduced difficulties in image processing. Chen et al. [14] proposed the
segmentation algorithm based on Mask-RCNN, the flow chart of which is shown in
Fig. 5. The proposed algorithm is robust and the input images are directly processed
to output the mask of the weld pool region. However, a fixed ROI region is selected to
extract the weld seam region. In conclusion, the ROI selection algorithm and the edge
detection algorithm are important in the seam tracking in K-TIG welding. The machine
learning algorithm, such as Mask-RCNN and SVM, has shown superior performance in
the ROI extraction process.

3.2 The Research of Penetration Recognition in K-TIG Welding

As a deep penetration welding technology, maintaining a proper penetration status is
significant in the K-TIG welding process. However, due to the inconsistent gap, the
deformation of weld specimen, and the sudden interference, etc., the penetration is



30 Y. Cui and Y. Shi

Fig. 5. The weld pool segmentation algorithm based on Mask-RCNN [14]

interfered and transited into lack of penetration or burn through. Therefore, the recog-
nition of penetration o is necessary, which is the basic feedback to control the welding
parameters �� .

Xia et al. [13] utilized theHDRcamera to capture theweld pool and arc images during
the K-TIG welding process. The undercut, lack of penetration, and burn through are
recognized by the proposed ResNet model. However, the thickness of the experimental
specimen is only 6 mm, which is too thin in the actual welding practice. Zhu et al. [40]
collected the arc sound and analyzed it in the time domain, frequency domain, and the
time-frequency domain. The weighted scoring criterion based on the Fisher distance
and the maximum information coefficient (Fisher–MIC) were utilized to reduce the
dimension of the arc sound features set from 34 to 12. Finally, based on the reduced
feature set, a SVM model was trained, which is able to identify the partial penetration,
the full penetration, and the excessive penetrationwithin the rate of 92.21%. Considering
the high cost of the HDR camera, Zhang et al. [38] proposed the HDR image processing
algorithm, empowering the traditional CCD camera to deal with the intense arc light.
Image characteristics were extracted from the weld pool region and the keyhole entrance
region, based on which the Softmax and SVM model were established. Comparing to
the SVM model, Zhang et al. found that the Softmax model has a higher recognition
rate and a faster response time.

4 The Research of Improving the K-TIG Welding

The K-TIG welding is characterized by the high welding current, free-burning arc, and
backside keyhole. However, due to the high welding current and the free-burning arc,
the weld pool region is large and the grains in weld microstructure is coarse, resulting
in the narrow operating window and bringing difficulties to the further generalization of
the K-TIG welding. Therefore, it is essential to widen the application and generalization
of the K-TIG welding, requiring a deeper knowledge of the dynamic K-TIG welding
process. Meanwhile, the arc physics needs to be analyzed, especially the arc pressure.
Finally, kinds of methods are tried to improve the K-TIG welding.

4.1 The Dynamic K-TIG Welding Process

During the deep penetration welding process, the arc penetrated the whole welding
specimen as shown in Fig. 6. Near the side of the welding torch to the back of the
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welding specimen, the keyhole can be divided into the keyhole entrance, the keyhole
channel and the backside keyhole exit.

Fig. 6. Sectional view of weld specimen during K-TIG welding process [32]

The backside keyhole exit is often called the keyhole. Comparing to the keyhole
entrance covered by the intense arc and the keyhole channel blocked by the weld spec-
imen, it is simple to observe the dynamic behaviors of the backside keyhole exit. Liu
et al. [42] established a vision sensing system to observe the dynamic behaviors of the
backside keyhole exit in PAW. Based on the vision sensing system, a mature keyhole
image processing algorithm was developed, and the dynamic behavior of the backside
keyhole was analyzed. Then, Liu et al. [18, 29, 30, 33] upgraded the system to observe
the keyhole in the K-TIG welding process.

At present, most of the works aiming to investigate the dynamic K-TIG welding
process are observing the backside keyhole. Only a few works observe the keyhole
entrance. However, the goal of observing the keyhole entrance is utilizing the keyhole
entrance image to track the weld seam [14] or recognize the penetration status [38]. Few
literatures reported the research on the keyhole entrance, where most of the arc plasma
penetrated through, and where the arc plasma interacted with molten pool dynamically.
It is essential to analyze the dynamic behaviors of the keyhole entrance. However, the
keyhole entrance is blocked by theweld specimen, bringing difficulties to the observation
of the keyhole entrance. Cui et al. [43, 44] referenced to the observation of keyhole
entrance in LBW, and established a steel/glass sandwich based sensing system to observe
the dynamic behaviors of the keyhole entrance and the sectional weld pool, as shown in
Fig. 7. The dynamic behaviors of the arc, keyhole, and weld pool are observed during
the whole K-TIG welding process, including the arc ignition stage, the stable arc stage,
and the arc extinction stage, as shown in Fig. 8. Cui et al. [43] investigated the influence
of axial magnetic field on K-TIG welding by means of the established sandwich based
sensing system. Cui et al. found that the arc emitting area decreased with the exertion of
axial magnetic field, resulting in the increase of arc force and arc pressure, which finally
lead to the improvement of the penetration ability.
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Fig. 7. Schematic of the sandwich based vision sensing system [44]

Fig. 8. Arc extinction process in K-TIG welding [44]

4.2 The Arc Pressure in K-TIG Welding Process

In 2001, Jarvis [4] has investigated the physical properties of the K-TIG arc, and found
the important role of surface tension in maintaining keyhole channel. The role of arc
pressure in penetrating the weld specimen was also analyzed. However, the arc pressure
was measured in relative weight limited to the experiment methods. Further accurate
measurement in Pa is still required.

Recently, Cui et al. [3] established an arc pressure measurement device, as shown
in Fig. 9. Experiments were carried out under the 3 mm arc length and 20 L/min pure
Argon protective gas. The maximum arc pressure was 757 Pa under the 250 A welding
current. However, the operating window of welding current is 515–622 Awhen carrying
out the bead on plate welding experiments on 8 mm thickness 304 stainless steel. The
experimental welding current 250 A is too small to represent the actual welding practice.
What’s more, the pinhole of the measurement device is φ2, which is large compared to
the diameter of the tungsten needle. Therefore, Liu et al. [28] improved the measurement
device, and the pinhole was reduced to φ1.5. The arc pressure under the influence of
cusp magnetic field was measured, and the maximum arc pressure was 818 Pa. Though
the maximum arc pressure increased when the cusp magnetic field was exerted, it is hard
to assert that the arc pressure was enhanced by the cusp magnetic field considering the
precision class of the pressure sensor.
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Fig. 9. The arc pressure measurement device and the measured arc pressure [3]

Considering the limitations of the current arc pressure measurement methods in K-
TIGwelding, the authors designed a water-cooling enhancing arc pressure measurement
device, as shown in Fig. 10. The pinhole is controlled within 0.5–1mm as the top surface
should be turning into plain after several welding experiments. Experiments were carried
out to measure the spatial distribution of the arc pressure, and the welding parameters
were shown in Table 1. The spatial distribution of the arc pressure is shown in Fig. 11.
The maximum arc pressure is 5362 Pa. Projecting the arc pressure onto X-Y plane, the
distribution of the arc pressure on the top surface of the weld specimen can be obtained,
as shown in Fig. 12. The arc pressure is in an axial symmetrical distribution along X
axis, which is the direction of the weld speed. However, the arc pressure measurement
device should be further optimized to measure the arc pressure under a higher welding
current.

Copper
column

Work
bench

Pressure 
sensor IPC

DAQ
Water
pump 

Water 
pump 

Fig. 10. Schematic of the arc pressure measurement system in K-TIG welding

Table 1. The welding parameters of the arc pressure measurement experiments

Welding current(A) Welding speed(mm s−1) Arc length(mm) Ar flow rate(L/min)

350 4 3 20
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Fig. 11. The spatial distribution of the arc pressure

Fig. 12. The distribution of the arc pressure on the top surface of the weld specimen
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4.3 Methods Tried to Improve the K-TIG Welding

After analyzing the dynamic keyhole process and the arc pressure, there are many direc-
tions to improve the K-TIG welding, including improving the penetration ability, reduc-
ing the threshold penetration welding current, and optimizing the microstructure and
properties of the weld. Many works have been done to achieve these goals, including
optimizing the structure of the weld torch, constricting the arc by external magnetic field,
and adding filling wires.

Cui et al. [3, 27] designed a weld torch with strong cooling capacity. The high
temperature region in the tip of tungsten torch is successfully compressed. In combination
with the optimization of the angle and materials of the tungsten needle, the arc pressure
is finally increased. Finally, the threshold welding current is decreased and the operating
window is enlarged. Liu et al. [32] exerted the jet flow argon gas backing on 16Mn steel,
widening the operating window from 410–450 A in normal protective gas conditions to
420–540 A. The specially designed device is shown in Fig. 13.

To obtain a better performance of the microstructure of the armour steel joint, Fei
et al. [5] used a trapezoidal interlayer to weld the 6.2 mm armour steel, as shown in
Fig. 14. Good mechanical properties were obtained by utilizing this interlayer welding
method. To simplify the welding procedure of preparing the trapezoidal interlayer, Fei
et al. [8] utilized the ER308 as the filler wires, substituting the interlayer to weld the
armour steel. For dissimilar joint between ferritic steel and austenitic stainless steel,
Fei et al. [7] utilized the post-weld heat treatment to improve the microstructure and
mechanical properties of the dissimilar joint. Fei et al. found that the 760 °C of the
post-weld heat treatment can obtain a better performance with respect to the overall
mechanical properties.

The exertion of the external magnetic field can affect the arc and the weld pool. Liu
et al. [28, 31] investigated the influence of the cusp magnetic field on K-TIG welding.
As shown in Fig. 15, the arc shape varies with the variation of the cusp magnetic field
angle α. When the cusp magnetic field was exerted, the arc voltage increased and the
threshold welding current decreased. The smaller the angle α is, the smaller the melting
region is, and the larger the arc voltage and penetration depth are. Ning et al. [45]
investigate the influence of rotation magnetic field, axial magnetic field, and rotation-
axial composite magnetic field on K-TIGwelding. Ning et al. reported that the arc radius
increased with the increase of the rotation frequency when the rotation magnetic field
was exerted. With regard to the weld pool, the weld pool bears the axial force when the
rotation magnetic field is exerted while it bears radial force when the axial magnetic
field is exerted. Therefore, the axial magnetic field can stir the molten pool and the low
temperature impact energy of the 10 mm Q345R weld joint can reach 53.6 J.
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Fig. 13. The installation of jet flow argon gas backing [32]

Fig. 14. Schematic of the K-TIG welding process in combination with the interlayer [5]

Fig. 15. The influence of cusp magnetic field on arc [28]
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5 Conclusions

This paper reviewed the literatures of the K-TIG welding, conclusions and research
issues are drawn as follows.

1) Literatures with higher LCS are reporting the application of the K-TIG welding,
indicating that these kinds of works could arouse the readers’ interests. However,
more works should be done to intelligentize and improve the K-TIG welding.

2) Considering the intense arc light in the K-TIG welding, all the seam tracking works
utilized the HDR technology, no matter from the hardware or software. Machine
learning technology shows great potential in welding image processing.

3) The penetration status in K-TIG welding can be recognized by processing the arc
sound signals and welding images. The recognition rate should be improved. The
potential of arc spectrum, arc electrical information, and multi-information fusion
could be investigated in recognizing the penetration status.

4) The importance of arc emitting region in the tungsten needle is revealed by analyz-
ing the dynamic K-TIG welding process. Enhancing the water-cooling in the weld
torch can compress the arc emitting region, thus the arc pressure is increased and
the operating window is enlarged.

5) The arc pressure of K-TIG welding is higher than 5 kPa in the normal conditions.
The arc pressure measurement device could be optimized and more accurate values
should be obtained especially under the welding current of 400–600 A.

6) Many kinds of methods are tried to improve the K-TIG welding. The exertion of the
external magnetic field shows great potential. To date, only the influence of rotation
magnetic field, axial magnetic field, and cusp magnetic field have been investigated.
The influence of transverse magnetic field and longitudinal magnetic field on K-TIG
welding should be studied.
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Abstract. In order to improve the efficiency of radiographic evaluation, the
method of image processing was used to extract weld defects. According to
the characteristics of weld radiographic image, a defect recognition algorithm
based on image segmentation was proposed. The algorithm was divided into three
stages: image preprocessing, weld segmentation and defect segmentation. Firstly,
the influence of different image enhancement algorithms and filtering methods on
the preprocessing effect of weld X-ray image was analyzed. Then an automatic
segmentation method based on connected region size was proposed. Finally, the
local threshold binarization and flooding filling algorithm were used to extract the
potential defects, and the aspect ratio, circularity and effective area were calcu-
lated. The results show that the extracted parameters can reflect the shape features
of actual defects.

Keywords: Extraction of defect · Radiographic testing · X-ray image

1 Introduction

Welded structures are widely used in many areas, such as construction, aerospace, rail-
way, petrochemical and machinery electrical. The weld defects are inevitable because of
the different environmental conditions and welding technology in the welding process.
It is critical to check the quality of welded joints to assure the reliability and safety of
the structure, especially for those critical applications where weld failure can be catas-
trophic. Being a part of NDT, the radiographic testing (RT) has played a significant role
in the inspection of welds. This technique uses penetrating and ionizing radians such as
X-rays or gamma rays to detect, in a welded joint, internal discontinuities. The obtained
radiograms are then manually examined by radiography expert proceeds to their quan-
tification and their identification to decide about their acceptance or rejection according
to the requirements of the weld RT standards and codes [1]. Finally, due to the high
developed film density, a subsequent illumination through a negatoscope is applied to
permit the film examination and interpretation. However, the human visualization qual-
ity of the films remains low due to many factors, such as bad contrast, image noise, low
dimension of some defects, interpreter skills and experience, interpreter physical and
mental states at the moment of interpretation, etc., making the evaluation subjectivity
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not negligible during weld defect detection and identification process [2]. Therefore, RT-
based computer vision weld interpretation system using image processing and pattern
recognition are, more than never, recommended.

Since the radiographic image has the characteristics of low contrast, narrow intensity
range, and multi-source noise, the preprocessing steps mainly include contrast enhance-
ment and noise filtering [3, 4]. Many scholars rush into the improvement of filter to avoid
the loss of detail information in the preprocessing process. A local pixel nonuniformity
factor (LPIF) method was proposed to enhance the contrast of radiographic images [5],
which can not only improve the contrast but eliminate noise. The track continuity of
defects in image sequences was detected by Kalman filter to identify real defects [6].
Some researchers are also committed to the development of filters, such as anisotropic
diffusion filtering [7] and Gabor filter [8]. The radiographic film contains the weld area
and other areas, while the defects are often located in the weld. Therefore, it is necessary
to extract weld area before defect extraction to avoid the interference of other areas
on defect detection. Threshold segmentation [9], morphological operation [10], back-
ground difference method [11], region growth [12] and edge detection [13] have been
widely used in defect extraction. However, there is no algorithm can be enough to the
defect extraction of all radiographic films because the weld radiographic films obtained
under different conditions have different sizes, shapes, contrasts and textures. There-
fore, different algorithms according to different welding conditions have been designed.
In ref [14], double wall double image (DWDI) exposure technology was studied for
automatic radiographic inspection of pipeline interior. Chi [15] studied the radiographic
image processing algorithm of steel plate lap weld. The support vector machine of [16]
was used to extract the image. Although these algorithms have achieved good detection
results, their generality is still limited.

In this paper, weld defects can be automatically recognized from radiographs through
image preprocessing, weld segmentation and defect segmentation. During the image
preprocessing, adaptive histogram equalization (AHE) can balance the brightness of the
weld area and improve the contrast between the defect area and the background without
noise being enhanced obviously after compared with ordinary histogram equalization.
Then themeanfilteringwith 9×3 size of template can effectively remove the noise points
of radiographwithout destroying useful information. In the step ofweld segmentation, an
algorithm based on the size of locally connected regions was proposed, and it is capable
of extracting weld bead from different radiographs. In the step of defect segmentation,
combining local thresholding and flood filling can adaptively extract defects.

2 Experiments and Analysis

In this paper, radiographic images of circumferential weld of a pressure vessel in a
factory were studied. Aiming at the characteristics of low contrast, narrow intensity
range and multi-source noise of weld radiographic images, the following automatic
defect recognition algorithm was designed in this paper (Fig. 1). The algorithm is based
on OpenCV, Python 3.7 and PyCharm compiler.
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Fig. 1. Procedure of the proposed algorithm for automatic defect recognition

2.1 Image Preprocessing

Contrast Enhancement. The weld seam and defect do not form a strong contrast with
the background because of the low contrast of X-ray image, which makes the image
segmentation very difficult. Therefore, it is necessary to highlight the useful information
of the image through histogram equalization. The conventional histogram equalization
can be expressed as follows:

g(x, y) = T
[
f (x, y)

]
(1)

where f (x, y) is the original gray value of point (x, y), g(x, y) is the enhanced gray value
of point (x, y), and T is the gray transformation function of f . After histogram equal-
ization, the dynamic range of gray image is enlarged. However, histogram equalization
belongs to point processing enhancement and is a global processing algorithm, which
will lead to the loss of useful information of the image. The adaptive histogram equaliza-
tion algorithm changes the contrast of the image by calculating the local histogram of the
image and redistributing the brightness. This algorithm is more suitable for enhancing
the local contrast of the weld radiographic image and obtaining more image details. The
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calculation formula is shown in (2):

x′
i,j =

{
T

(
xi,j

) + k
(
xi,j − mi,j

)
0 ≤ xi,j ≤ 255

T
(
xi,j

)
otherwise

(2)

where xi,j. and x′
i,j represent the gray value of the image before and after the transforma-

tion, mi,j denoted by xi,j is the neighborhood mean of the center, T is for xi,j can adjust
the dynamic range of histogram, k

(
xi,j − mi,j

)
is equivalent to a high pass filter, which

can enhance the local contrast.
The gray scale image of the pressure pipelineweldX-ray film image shows in Fig. 1a,

and the effect of the weld line image through the ordinary histogram equalization shows
in Fig. 1b. It can be seen that the contrast between the weld area and the defect area is
improved, and the surrounding noise is amplified, and the defect is covered by noise.
Figure 1c shows the effect of the adaptive histogram equalization algorithm, which well
balances the brightness of the weld area, improves the contrast between the defect area
and the background, and the noise is not obviously enhanced. Therefore, in order to
avoid the influence of noise equalization on the histogram, the image enhancement was
realized by using the histogram. The results of adaptive histogram equalization of the
remaining two radiographs are shown in Fig. 3.

Fig. 2. (a). original gray image; (b). histogram equalized image; (c). adaptive histogram equalized
image
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Fig. 3. (a). original gray image; (b). histogram equalized image; (c). adaptive histogram equalized
image

Mean Filtering. It is necessary to filter and suppress the radiographic noise which have
been enhanced by previous step. The purpose can be achievedwith convolution operation
of filtering template. The formula mean filtering can be described as follows:

f (x, y) = 1

M

∑

(i,j)∈R g(i, j) (3)

where R represents an area in the image, M represents the total number of pixels in the
R area, and points (x, y) are the center pixels of the R area.

Figure 4 shows the results of mean filtering on Fig. 2c with 3 × 3, 5 × 5 and 9 × 3
templates. It can be seen that the 3 × 3 template (Fig. 4a) has a bad noise suppression
effect, but the edge of the weld area becomes heavily fuzzy under the 5 × 5 template
(Fig. 4b), and loses a lot of defect details. However, the 9 × 3 template (Fig. 4c) has
a superior mean filtering effect, that is, it can filter useless information and retain the
defect details and weld edges completely. Therefore, 9× 3 template mean filter was used
to denoise the image in this paper, and the average filtering result is shown in Fig. 5.

2.2 Weld Area Extraction Based on Connected Region Size

Weld area extraction equates essentially a problem of image segmentation. But image
segmentation methods are often highly specific and only suitable for some types of
problems and images. There is no a special method can solve all the image segmentation
problems. Because the X-ray image contains not only the weld seam, but also the film
model, date andother areas,maskmethod, commonlyused inOpenCV imageprocessing,
was used to extract the weld area. The basic idea is: firstly, the mask of the region
of interest is obtained, and then the obtained mask and the original image are matrix
added. The key step to realize mask extraction is to obtain mask. The conventional
method of obtaining mask by drawing is obviously limited by the size of the image.
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Fig. 4. The results of mean filtering with different template size: (a). 3 × 3 size; (a). 5 × 5 size;
(a). 9 × 3 size

Fig. 5. Results of mean filtering: (a) (c). contrast enhanced images; (b) (d). mean filtered images

Therefore, combinedwith the characteristics of theX-ray image, that is, there are various
connected regions, and the weld area is the largest, so this paper proposed to use the
maximum through domainmethod to obtain themask ofweld area. The design algorithm
is as follows: (1) After preprocessing the image, binarization, expansion and corrosion
operations are carried out to obtain a binary map with distinct connected domains; (2)
The contour of each region is extracted, the index value is assigned to each contour,
and the area of contour is calculated; (3) Find the contour index value maxidex with the
largest enclosed area. (4) Traverse the contour. If the contour index value is not equal to
maxidex, change the color of the enclosed area into black.
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According to the above algorithm, the connected region with the largest area was
left and the weld mask was obtained. Finally, the weld area could be obtained by matrix
addition of the mask and the contrast enhanced gray image. The implementation process
is shown in Fig. 6. Figure 6b describes the result of Fig. 6a after thresholding and
morphological operation. It can be found that the weld area is the largest. It is necessary
to extract the contour of each area and calculate the area enclosed by the contour to
obtain the weld mask. The obtained weld mask is shown in Fig. 6c, and then Fig. 6c
and Fig. 6c are added, and the final weld result is shown in Fig. 6d. Similarly, the same

Fig. 6. The process of weld bead extraction: (a). image after preprocessing; (b). image after
thresholding and morphological operation; (c). mask; (d). final result of weld extraction

Fig. 7. Results of weld extraction: (a) (c). original images; (b) (d). results
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algorithm is used to extract the other two X-ray welds after pretreatment, and the effect
is shown in Fig. 7.

2.3 Defect Extraction Based on Local Threshold and Flood Filling

Local Thresholding. After the welding seam was segmented, the pixel level was
divided into several categories by setting the threshold value according to the differ-
ence between the target and the background in the image, so as to realize the separation
of the target and the background. The mathematical expression is as follows:

g(x, y) =
{
1 f (x, y) ≥ T
0 f (x, y) < T

(4)

where f (x, y) is the original gray value at the point (x, y), and t is the gray threshold
to distinguish the target from the background. It can be seen from the expression that
the gray value of the pixel that is greater than or equal to the threshold value is set to 1,
corresponding to the target in the image, while the gray value of the pixel smaller than
the threshold value is set to 0, corresponding to the background in the image. Therefore,
the effect of threshold segmentation depends on the selection of threshold.

In this paper, the local threshold was used for binary segmentation of the image. A
pixel and its surrounding 5× 5 pixels neighborhoodwere regarded as “local”. According
to the two-dimensional Gaussian distribution function, the weighted sum is used as the
threshold of the point, and all the pixels in the image are traversed. Finally, the image can
be binarized and segmented. The expression of two-dimensional Gaussian distribution
function is as follows:

G(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 (5)

Figure 8a shows the result of local binarization. It can be seen that the weld edges and
defects are almost extracted, and the contour is very clear, which can basically represent
the information transmitted to the brain by the human eye when observing the image.
However, there are some white noises inside the weld, and the weld boundary is not
smooth enough, so it is necessary to filter the binary image. Figure 8b shows the result
of 5 × 5 template mean filtering. It can be observed that some smaller noise points are
well suppressed, and the larger noise points are alsoweakened. TheOtsu global threshold
processing can make the noise pixel value be replaced by 0, and the foreground is further
highlighted. The final local threshold processing results are shown in Fig. 8c.

Flood Filling. After the binary image of weld was obtained by local threshold method,
defects needed to be segmented.As shown inFig. 8c, the adaptive thresholding eliminates
the weld background, leaving weld boundaries and defects. According to the conven-
tional idea, only twoweld boundaries needed to be removed, filtering andmorphological
operations were then carried out to get the target. However, this idea is desirable for the
processing of a single radiograph, and the parameters of the algorithm also need to be
changed for different radiographic images. It is obvious that traditional idea for elim-
inating weld boundary remains low adaptability. Flooding filling is commonly used in
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Fig. 8. The process of local thresholding: (a). the result of local thresholding; (b). the result of
mean filtering; (c). the result of Otsu thresholding

graphics rendering software. Only by setting the starting point of filling pixel, the closed
area where the point is located can be filled into a new color. The weld seam just forms
the closed area in the image, and the starting point of the filling pixel can be determined
according to the size of the image. Opencv provides a flood fill function (floodfill()),
which is implemented as follows: (1) Mark the pixel of seed (x, y); (2) The color of the
point is detected. If it is different from the boundary color and the fill color, the point is
filled with the fill color, otherwise it is not filled; (3) Detect the adjacent place and turn
back to step (2). There are two kinds of adjacent pixels: four-way connectivity and eight
term connectivity (Fig. 9).

Fig. 9. (a). four connected region; (b). eight connected region
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Figure 10 shows the process of defect extraction by flood filling. Flood filling was
carried out according to the two starting points F1 and F2 shown in Fig. 10a. The filling
color was white, and the result is shown in Fig. 10b. It can be found that the outside of
the weld area turns to white, and then it is only necessary to fill the outside of the weld
area once more. The filling color was set to black, and still F1 and F2 were set to the
starting points, the defect could then be segmented. The results of secondary flooding
filling are shown in Fig. 10c. It can be seen that flooding filling can effectively eliminate
the weld boundary.

Fig. 10. The process of flood filling: (a). labelling of seeds; (b). first flooding filling; (c). second
flood filling

Defect Labeling and Recognition. In order to verify the accuracy of the proposed algo-
rithm, the extracted defects were drawn in the original image, and each contour was
marked. The results are shown in Fig. 11 (b) (d) (f). The aspect ratio, circularity and
effective area of each profile were calculated respectively. The calculation results are
shown in Table 1. It can be found that the aspect ratio of crack defects is greater than
1.5, while the roundness of non-crack defects is close to 1. The calculated effective area
can highlight the actual size of defects.
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Fig. 11. The results of defect extraction: (a) (c) (e). original images; (b) (d) (f). detection results

Table 1. Table captions should be placed above the tables.

Image name Contour index Aspect ratio Roundness Effective area

Figure 11. (b) 1 16.67 0.091 2.51

2 2.67 0.575 1.85

3 6.55 0.213 2.08

4 1.0 0.857 1.01

5 1.5 0.754 0.6

6 1.5 0.923 1.15

7 1.25 0.913 1.55

Figure 11.(d) 1 10.69 0.075 1.104

2 5.06 0.170 0.896

Figure 11. (e) 1 8.67 0.218 0.958
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3 Conclusions

The length width ratio, roundness and effective area of the defects extracted were cal-
culated. The length width ratio of the crack defect is greater than 1.5, and the roundness
of the non-crack defect is close to 1. The defect recognition algorithm proposed in this
paper can be used not only for the auxiliary evaluation of weld radiographic film, but
also as a preprocessing step for classification and recognition of weld defects.
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Abstract. Molten pool image segmentation and feature extraction based on vision
sensor is one of the core tasks of robotic automated welding. The Geodesic active
contour model (GAC) method is used for the molten pool image in the multi-
layer and multi-pass welding process (non-swing welding), and the molten pool
contour can be effectively separated from the two-dimensional image obtained
by the welding vision sensor. Through further analysis of the extracted contour,
calculation of melting width, comprehensive evaluation of the radius of curvature
of the front, upper and lower ends of themolten pool, themolten pool inmulti-layer
multi-pass welding can be divided into seven types. Corresponding to the seven
forming conditions in multi-layer and multi-pass welding, the MLD classification
model is established. The experimental results show that the image segmentation
method based on GAC can effectively obtain the edge of MAG weld pool. The
characteristics of weld pool can be exactly corresponding to the seven types of
multi-layer and multi-pass, which lays a foundation for the MLD dynamic control
of welding.

Keyword: Robotic MAG · Molten pool · Multi passes · GAC · Image
segmentation · Feature extraction · MLD classification

1 Introduction

As a relatively mature process, arc welding is widely used in heavy industry, especially
in the fields of energy, transportation, chemical engineering and marine engineering
[1]. The plate members in these fields are mostly composed of steel structures, and the
plate exceeding 10 mm often need to be formed by multi-layer multi-pass welding [2,
3]. As a new process of MAG welding, CMT welding method has the advantage of
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reducing welding heat input and welding spatter, reducing welding residual stress and
welding distortion compared with traditional MIG welding [4]. Usually this welding
method is only suitable for Thin plate welding [5, 6]. In order to eliminate the pro-
cess of heat treatment after the workpiece is welded, it is introduced and applied to
the multi-layer and multi-pass welding process. At present, multi-layer and multi-pass
welding are mainly traditional manual arc welding and semi-automatic welding, and the
efficiency is relatively low; at the same time, the fumes and strong arc light generated
during the welding process damage the health of the welder [7]. For to improve the pro-
duction efficiency of multi-layer and multi-pass welding and free the welder from the
harmful welding environment, higher requirements are put forward for modern welding
intelligent manufacturing.

In order to realize the automation and intelligence of welding manufacturing pro-
cess, it is necessary to simulate professionalwelderswith specific equipment andmodels.
Chen et al. [1, 8] proposed the concept of Intelligent Welding Manufacturing Technol-
ogy/System (IWMT/S), the core of which is to use welding robots for precise motion
control of the welding process, and to realize automatic welding without any participa-
tion. From the perspective ofmulti-robots, a macro-task allocationmodel for multi-robot
welding is established. Through the established welding expert system, complex weld-
ing tasks are decomposed and completed one by one [9–11]. Starting from the specific
welding process, first obtain the sensor information during the welding process, includ-
ing the voltage and current information of the arc, the molten pool information [12–14],
the sound information [15, 16], and the spectral information [17–19]. Furthermore, a
real-time control model is established through this information and feedback control of
welding process parameters is performed [20].

In modern industrial processes, the control of hybrid systems with interactive
continuous-time dynamic characteristics and discrete-time dynamic characteristics has
become universal, and it is a hot research issue in the field of control research [21]. The
automated robot welding process is a typical hybrid system dynamic control process,
which includes the robot posture, the robot’s motion process and the continuous and dis-
crete dynamics of the welding equipment operation process [22–24]. By analyzing the
continuous and discrete dynamics of the dynamic process of the molten pool, combining
the visual information of the welding process of the wrong edge and gap, and abstract-
ing it into discrete variables, Ma established the misalignment molten pool mixed logic
dynamic model [25] and the gap molten pool mixed logic dynamics model [26], which
provides an effective estimate for penetration control.

To realize the intelligent welding process, it is necessary to process the images
collected during the welding process to obtain important information in the welding
process. The characteristics of the molten pool play an important role in weld formation
and welding quality inspection. Because the welding environment changes greatly, there
is no stable illumination, and the complex reflection characteristics of the molten pool
surface and the intense light intensity of the arc are disturbed, the edge of the molten
pool image is difficult to obtain effectively. In order to obtain a stable and accurate edge
of the molten pool, many scholars have done a lot of research work [27]. Zou et al. [28]
first used the Haar wavelet to filter the molten pool image, and then binarized the pool
image by directly setting the threshold. Shen et al. [29] used the Robert operator method



58 H. Zhou et al.

to perform edge detection on the molten pool image and then perform refinement to
obtain the center of the molten pool. In the traditional image segmentation method [30],
the canny operator is not susceptible to noise interference. Two different thresholds are
used to detect the strong edge and the weak edge respectively, and when the weak edge
and the strong edge are connected, the weak edge is included in the output image. Kong
et al. [12] used the canny operator to perform edge detection on the TIG’s weld pool
to obtain the edge of the weld pool. The edges of these weld pools also include some
interference information, which needs further filtering.

Xu et al. [31] proposed an improved Canny operator for edge detection of molten
pool images. In this algorithm, a nonlinear anisotropic diffusion filter is first used instead
of a Gaussian filter, then the Otsu algorithm is used to automatically adjust the high and
low thresholds, and then the adjusted threshold is used to detect and connect the edges
of the image. In laser welding, zheng et al. [32] based on the shape of the molten pool
is a prior knowledge of the closed convex profile. The active contour model based on
the closed convex shape is established, and the stable laser welding pool segmentation
result is obtained.

The demand for multi-layer and multi-pass welding used in heavy industry is very
large, and many researchers are studying multi-layer and multi-pass welding planning
[2, 3]. However, starting from the welding pool, there are relatively few researches
on the image characteristics of multi-layer and multi-channel welding pools, and the
establishment of feedback control models for welding parameters based on the image
characteristics. In this article, we mainly analyze the molten pool of multi-layer and
multi-pass non-swing welding and related forming, find the rules and classify the molten
pool, and provide a basis for establishing the relevant MLD model.

2 Experimental System and Image Acquisition

2.1 Experimental System

The complete experimental system is shown in Fig. 1a, which consists of three parts:
MAG system, Fanuc robot motion system, molten pool image acquisition system. The
MAG system mainly refers to the Fronius TPS 400i welding source, which includes
MAG power, wire feeder, liquid-cooled tank, welding torch, and gas cylinder (80%
argon and 20% carbon dioxide as shielding gas). The robot Fanuc motion system is
composed of the six-axis robot body, the robot motion controller, and the teaching box.

The vision sensor includes a high dynamic range camera (Xiris XVC-1000), (what
filter and dimming film are added, the transmittance is 80%), which is installed under
the robot flange through a universal bracket. The horizontal direction of the sensor to
the welding workpiece is 35° (as shown in Fig. 1.c), and the distance from the camera
to the tip of the welding wire is 190 mm.

The composition of the multi-layer and multi-pass welding base metal involved in
this paper has dimensions shown in Table 1, the schematic diagram is shown in Fig. 2,
and the welding parameter table is shown in Table 2.



MLD Classification Model of Visual Features of Multi-layer and Multi-pass 59

(a)

(b) 

Fig. 1. (a) Thewhole experimental system. (b) The position relationship between the vision sensor
and the welding workpiece.

Table 1. Information of the base metal.

Welding materials Thickness Groove angle Type of weld seam

Q235 30 mm 30° Butt joint

2mm

2mm

30°

Fig. 2. Schematic diagram of welding base metal size.
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Table 2. MAG welding parameters.

Welding parameters Value

Welding type CMT

Welding speed (mm/min) 240

Backing welding current (A) 170–185

filling welding current (A) 210–280

Angle of torch (°) −15–15

Air flow (L/min) 1.5

Dimensions of workpiece (mm) 400 × 150 × 30

2.2 Image Acquisition

The Xiris molten pool vision sensor can collect 25 grayscale images of the molten pool
every second, and the size of the grayscale image is 300 * 300 pixels. Taking the bottom
welding and the first pass of the 3rd layer as an example, the corresponding weld pool
image is shown in Fig. 3.

(a) (b) 

Fig. 3. Typical multi-pass weld pool image. (a)The pool image of backing. (b) The pool image
of backing first pass of the 3rd layer.

3 Multi-layer and Multi-pass Forming Analysis

The theoretical modes of multi-layer and multi-pass welding are generally divided into
three situations, as shown in Fig. 4; they are triangular forming, trapezoidal forming and
parallelogram forming.

Through many welding experiments, the welding sequence of multiple layers and
multiple passes is shown in Fig. 5. The principle of welding planning is the welding
sequence of the two sides first and then the middle.
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(a)                               (b)                              (c)

Fig. 4. (a) triangular forming. (b) trapezoidal forming (c) parallelogram forming.
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Fig. 5. Multi-layer and multi-pass welding sequence for 30 mm thick plates

In the process of multi-layer and multi-pass welding, since there are many welding
layers, it is necessary to classify the welding pool through the corresponding theoretical
model:

From the analysis of the multi-layer and multi-pass welding plan, the triangular
shape is the backing welding.

(1) Triangle forming (Type 1)

The molten pool of the Type 1 is shown in Fig. 6.
The welding current of the back welding is about 175A, and the current is relatively

small. Due to the restriction of the side wall of the groove, the included angle at the front
end of the molten pool is a small acute angle.

(a)                                                                    (b) 

1

Fig. 6. (a) Schematic diagram of weld bead filling. (b) (a) corresponding molten pool image.
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(2) Trapezoidal forming

There are generally three types of trapezoid formation: the first is shown in Fig. 7,
where the weld bead is formed on the basis of the bottom welding, and the two sides of
the molten pool are not restricted by the side walls; the second is shown in Fig. 8, The
case where one side of the molten pool is a side wall and the other side is a weld bead;
the third is shown in Fig. 8, where both sides of the molten pool are weld beads.

1) When welding grooves on both sides (Type 2):

(a)                                                                    (b) 

1

2

Fig. 7. (a) Schematic diagram of weld bead filling. (b) (a) corresponding molten pool image.

2) When one side is groove and the other is weld bead (Type 3):

(a)                                                                    (b) 

1

2
3 4

Fig. 8. (a) Schematic diagram of weld bead filling. (b) (a) corresponding molten pool image.

3) When both sides are weld beads (Type 4) (Fig. 9):
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(a)                                                                    (b) 
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(c)                                                                    (d) 

(e)                                                                    (f) 
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Fig. 9. (a) (c) (e) Schematic diagram of weld bead filling. (b) (d) (f) (a) (c) (e) corresponding
molten pool image.

(2) Parallelogram forming

There are three types of parallelogram formation of weld beads: the first is the case
where one side is the side wall, as shown in Fig. 10; the second is the case where one
side is the weld, as shown in Fig. 11; This is the case of cover welding, as shown in
Fig. 12.

1) When one side is groove (Type 5):

2) When one side is the weld bead (Type 6):

3) In the case of cover welding (Type 7):
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(a)                                                                    (b) 

(c)                                                                    (d) 

(e)                                                                    (f) 
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(g)                                                                    (h) 

(i)                                                                    (j) 
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Fig. 10. (a) (c) (e) (g) (i) Schematic diagram of weld bead filling. (b) (d) (f) (h) (j) (a) (c) (e) (g)
(i) corresponding molten pool image.
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(a)                                                                    (b) 

(c)                                                                    (d)

(e)                                                                    (f) 
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Fig. 11. (a) (c) (e) Schematic diagram of weld bead filling. (b) (d) (f) (a) (c) (e) corresponding
molten pool image.

(a)                                                                    (b) 

(c)                                                                    (d)
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Fig. 12. (a) (c) Schematic diagram of weld bead filling. (b) (d) (a) (c) corresponding molten pool
image.
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In a word, starting from the three theoretical models of multi-layer and multi-pass
forming, after specific forming analysis, all types of weld bead can be divided into 7
types, which represent the types of typical multi-layer and multi-pass forming.

4 Multi-layer and Multi-pass Welding Pool Features Extraction

Theflowofmulti-layer andmulti-passmolten pool feature acquisition is shown in Fig. 12
below. First of all, checkerboard calibration is performed on the area of the weld pool.
The purpose of calibration is to obtain the actual melting width and length. The second
is to use the Geodesic active contour model (GAC) method to segment the molten pool
image. After obtaining the edge curve of the image, divide the edge curve into three parts,
the upper half of the molten pool, the lower half, and the right part. Fit the three curve
parts of the molten pool and calculate their radius of curvature respectively. According
to the different types of multi-layer and multi-pass forming, it is judged by the obtained
radius of curvature and combined to obtain the characteristic information of the molten
pool.

Fig. 13. Multi-layer and multi-pass welding pool image feature extraction flowchart.

4.1 Image Calibration

In this study, the actual width and length of the molten pool need to be obtained, so the
image of the molten pool needs to be calibrated. As shown in Fig. 13, the blue arrow
is the x direction and the red arrow is the y direction. The size of the checkerboard is
9 * 9 mm (Fig. 14).

The calibration values obtained in the x direction and y direction are:

kx = 9/
√

(x2 − x′
2)

2 + (y2 − y′
2)

2 = 0.147461mm/pixel

ky = 9/
√

(x1 − x2)2 + (y1 − y2)2 = 0.075606mm/pixel
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Fig. 14. Multi-layer and multi-pass welding pool image feature extraction flowchart.

4.2 Image Segmentation

The segmentation of weld pool image is the basis of welding vision to obtain informa-
tion. It is the first step in the subsequent processing of weld pool geometric features,
classification and feedback control, and it is also a difficult problem in weld pool image
processing. Geodesic active contour(GAC) [33] model based on curve evolution theory
and level set method is widely used in edge detection, image segmentation and other
fields. In plane image segmentation, it expresses the 2-dimensional evolution curve as
the zero level set of a high one-dimensional 3-dimensional continuous function, and the
level set function is defined as the symbol distance function of the evolution curve, which
can better deal with the change of the curve topology. Therefore, the GACmodel is used
to segment the molten pool image, and the specific segmentation process is shown in
Fig. 15.

(a)                     (b)          (c) 

(d)         (e)                                                 (f) 

Fig. 15. Use GAC model to segment the pool image.
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4.3 Weld Pool Feature Extraction

After obtaining the edge of themolten pool, the next step is to obtain the edge curve of the
molten pool. Taking the first molten pool of the fourth layer as an example, Fig. 15(a)
shows the original image of the molten pool, and Fig. 16(a) shows the three parts of
the molten pool that need further analysis. Figure 16(b) shows the segmentation of the
molten pool through the GAC; Fig. 16(c) shows the edge curve of the molten pool, that
is, the upper part, the lower part, and the right part of the molten pool. Figure 16 (d),
(f), (h) are the three curve divisions of the molten pool, and Fig. 16 (e), (g), (i) are the
corresponding curve fittings.

Now define each characteristic parameter of the molten pool:
W is the weld width, and L is the weld length. Rt is the maximum curvature radius

of the upper curve of the molten pool, Rtr is the maximum curvature radius of the upper
curve of the molten pool. Rr is the maximum curvature radius of the right curve of
the molten pool, Rb represents the maximum curvature radius of the lower curve of the
molten pool, and Rbr represents the maximum curvature radius of the lower right portion
of the curve of the molten pool.

(1) Triangle, type 1:

It can be analyzed from the welding current that the current of the bottom welding
is generally 175A, which is quite different from the welding current of the fill welding,
so the type of bottom welding can be distinguished intuitively from the melting width
(Fig. 17 and Table 3).

Through statistics, the criteria are as follows:

uw ↔ W ≤ 115

pc1 ↔ uw (4-1)

(2) Trapezoid, type 2 (Fig. 18 and Table 4):

The criteria are as follows:

urt2 ↔ |Rt| < 115

urr2 ↔ |Rr| < 50

urb2 ↔ |Rb| < 115

ubbt2 ↔ ||Rb| − |Rt|| < 35

pc2 ↔ ¬uw ∧ urt2 ∧ urr2 ∧ urb2 ∧ ubbt2 (4-2)
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(a)          (b) (c) 

(d)        (e) 

(f)   (g) 

(h)                                (i) 

Fig. 16. Three-part curve acquisition of multi-layer and multi-pass MAG welding pool. (a) The
three parts of the molten pool that need further analysis. (b)The pool Image after binarization. (c)
Edge curve of molten pool. (d), (f), (h) The three curve divisions of the molten pool. (e), (g), (i)
The curve fitting corresponding to figure (d), (f), (h).
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(a)      (b)        (c)     (d)  (e) 

(f) 

Fig. 17. The molten pool of the type 1 (backing weld) bead. (a)–(e) are five randomly selected
molten pool images. (f) To randomly select a molten pool image for verification

Table 3. Type 1 of molten pool parameters.

W L 
105 153
105 156
105 156
107 157
107 161
107 163

(a)          (b)      (c)     (d)  (e) 

 (f) 

Fig. 18. The molten pool of type 2. (a)–(e) are five randomly selected molten pool images. (f) is
to randomly select a molten pool image for verification.
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Table 4. Type 2 of molten pool parameters.

W L Rt Rtr Rr Rb Rbr 
159 215 79.276 33.7535 46.7916 103.9456 70.25
159 215 82.9049 38.0113 44.8293 113.2096 117.3368
159 217 88.6734 61.8229 45.4542 107.0541 282.6984
157 217 89.4454 57.922 45.9784 103.6563 95.634
157 218 95.0685 69.692 44.6619 102.0378 157.749
158 218 92.3826 65.2369 45.7832 104.5244 139.952

(3) Trapezoid, type 3 (Fig. 19 and Table 5):

(a)          (b)      (c)     (d)  (e) 

(f) 

Fig. 19. The molten pool of type 3. (a)–(e) are five randomly selected molten pool images. (f) To
randomly select a molten pool image for verification.

The criteria are as follows:

urt3 ↔ |Rt| < 105

urr3 ↔ 22 <|Rr| < 28

urb3 ↔ |Rb| < 110

ubbt3 ↔ ||Rb| − |Rt|| < 10

pc3 ↔ ¬uw ∧ urt3 ∧ urr3 ∧ urb3 ∧ ubbt3 (4-3)
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Table 5. Type 3 of molten pool parameters.

W L Rt Rtr Rr Rb Rbr 
149 213 85.5911 197.8414 26.8985 85.9074 194.3363
147 221 83.8003 133.3447 27.3709 92.932 665.4702
147 219 90.3914 188.0991 26.2565 99.2006 325.4636
145 220 101.0607 211.8539 26.6252 106.4114 252.9662
145 221 97.3207 191.9639 24.7745 100.5413 694.1431
147 223 102.6654 217.9962 23.4133 109.5718 375.0627

(4) Trapezoid, type 4 (Fig. 20 and Table 6):

(a)          (b)      (c)     (d)  (e) 

(f)    (g)                      (h)     (i)  

Fig. 20. The molten pool of type 4. (a)–(f) are two randomly selected molten pool images. (g)–(i)
To randomly select a molten pool image for verification.

The criteria are as follows:

urt4 ↔ 50< |Rt| < 85

urr4 ↔ 17< |Rr| < 27

urb4 ↔ |Rb| < 90

ubbt4 ↔ ||Rb| − |Rt|| < 21

urtc4 ↔ Rbr < 0
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Table 6. Type 4 of molten pool parameters.

143 193 64.3408 -4945.2167 23.1494 54.4977 -188.7877
143 190 62.5592 -5226.144 23.5489 61.4746 -341.2367
139 190 53.2057 -5206.568 20.4364 63.0447 -387.4696

11 131 195 60.106 -169.7276 24.3817 80.8584 -317.6024
133 189 60.9807 -191.3551 24.2848 63.7415 -120.9918
135 189 57.0138 -237.8718 26.5708 72.1065 -5094.479
131 188 64.7271 -64.7271 25.7175 70.6339 -2407.798
129 191 63.0117 -251.9374 24.5282 85.7223 -1855.276

16 137 209 79.3633 -221.4421 19.4788 84.8692 -2216.673
131 193 75.0741 -700.8264 21.9214 65.5621 -963.2916
139 204 84.1078 -305.1603 22.5752 76.277 -466.4149
135 213 75.9227 -539.8999 18.3402 83.3682 -290.6306
133 203 83.743 -209.298 21.4706 77.683 -7740.307

7 137 196 60.5792 -5306.8196 19.7811 65.9601 -349.3552
11 127 191 60.94 -375.2437 24.4326 87.0569 -668.3157
16 135 203 83.7501 -984.0019 19.8724 61.3134 -417.2899

pass W L Rt Rtr Rr Rb Rbr
7 143 193 56.3753 -5555.8552 23.3418 54.0618 -311.8901

141 197 60.5102 -4978.9889 22.0322 57.7988 -174.0986

ubtc4 ↔ Rbr < 0

pc4 ↔ ¬uw ∧ urt4 ∧ urr4 ∧ urb4 ∧ ubbt4 ∧ urtc4 ∧ ubtc4 (4-4)

(5) Parallelogram, type 5 (Fig. 21 and Table 7):

The criteria are as follows:

urt5 ↔ 85< |Rt| < 155

urr5 ↔ 33< |Rr| < 45

urb5 ↔ 60< |Rb| < 82

ubbt5 ↔ ||Rb| − |Rt|| < 85

pc5 ↔ ¬uw ∧ urt5 ∧ urr5 ∧ urb5 ∧ ubbt5 (4-5)
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(a)          (b)      (c)     (d)  (e) 

(f)    (g)      (h)      (i)  (j) 

(k)           (l)      (m)                      (n)  (o) 

Fig. 21. Themolten pool of type 5. (a)–(j) are two randomly selected molten pool images. (k)–(o)
To randomly select a molten pool image for verification.

(6) Parallelogram, type 6 (Fig. 22 and Table 8):

The criteria are as follows:

urt6 ↔ 80< |Rt| < 138

urr6 ↔ 30< |Rr| < 47

urb6 ↔ 53< |Rb| < 73

ubbt6 ↔ ||Rb| − |Rt|| < 65

ubtc6 ↔ Rbr < 0

pc6 ↔ ¬uw ∧ urt6 ∧ urr6 ∧ urb6 ∧ ubbt6 ∧ ubtc6 (4-6)

(7) Parallelogram, type 7 (Fig. 23 and Table 9):
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Table 7. Type 5 of molten pool parameters.

pass W L Rt Rtr Rr Rb Rbr 
3 159 222 99.419 145.319 37.9801 78.8085 91.3605

159 232 102.6757 127.9223 37.4002 76.8588 98.8327
161 226 85.7161 126.4251 40.5345 78.5779 131.5777
161 225 88.4945 60.5219 40.348 81.4894 133.62
163 234 92.4032 43.0999 39.5433 76.6258 122.4742

5 153 221 147.6841 36.6504 44.9708 73.9984 200.0176
153 217 131.4755 60.3901 41.0304 76.8382 102.4092
151 218 114.9791 18.2926 44.1616 76.8368 73.3608
151 217 114.8398 43.0148 44.3951 77.5024 282.1384
155 209 102.1529 42.423 45.6374 71.6163 153.1936

6 160 220 73.5091 106.0315 41.0398 118.9931 41.8942
161 219 66.8628 55.3658 41.3335 127.5468 34.0626
161 217 70.6655 135.1551 40.2617 132.8812 43.8204
157 218 68.9225 78.8941 39.4617 135.0497 51.7431
157 219 69.4237 94.7675 39.3826 131.3384 38.4752

8 145 207 143.1609 75.34 34.1876 66.5981 464.626
141 204 151.0228 21.5064 37.8685 71.6805 82.7574
141 203 141.7465 27.4193 38.8503 68.6791 173.305
141 203 146.5179 56.5966 37.8298 74.0481 103.058
141 201 146.2478 32.5917 36.5269 73.6076 105.552

9 143 197 63.3954 115.4262 40.192 145.427 18.88
141 199 62.1299 71.3367 39.8112 143.5173 54.2081
141 202 68.239 96.6824 39.8355 139.6161 132.358
141 204 66.0865 72.5481 39.6356 148.3546 45.0454
139 201 66.7349 105.2763 39.9214 146.67 210.97

3 162 231 97.7938 47.113 38.4162 74.6338 115.294
5 151 211 101.5942 24.7872 43.6021 71.0419 407.268
6 158 216 68.5453 80.6139 38.3785 134.0264 38.1636
8 141 201 135.3096 179.9543 39.7619 71.6912 105.273
9 141 201 65.9604 350.1976 39.7983 129.2673 54.5188
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(a)          (b)      (c)     (d)  (e) 

(f)    (g)                      (h)     (i)  

Fig. 22. The molten pool of type 6. (a)–(f) are two randomly selected molten pool images. (g)–(i)
To randomly select a molten pool image for verification.

Table 8. Type 6 of molten pool parameters.

165 217 79.5456 27.664 45.4802 61.9466 -781.9262
167 216 82.0002 75.5636 44.5167 57.8463 -92.2382

15 171 233 71.5709 -2340.716 45.2712 107.1723 24.3783
171 231 71.2194 -130.4077 44.2595 115.2049 21.2203
171 233 70.7274 -103.0834 44.4478 121.7682 37.2183
169 225 70.9579 -3622.179 44.165 131.0743 14.3236
165 219 64.8885 -392.794 43.7776 86.7009 32.3969

10 149 209 122.9329 26.4931 33.2848 55.6208 -331.5272
14 165 215 82.2734 43.9459 45.9019 60.2076 -1325.601
15 165 217 61.3678 -162.9544 40.0473 88.4657 65.2723

pass W L Rt Rtr Rr Rb Rbr 
10 151 207 104.0077 43.6882 32.374 59.004 -705.6589

149 207 116.206 62.045 32.3293 63.8371 -100.0862
149 209 132.0414 36.9397 32.0472 60.3521 -924.8026
149 209 136.995 18.292 30.8752 58.8568 -288.5754
151 210 123.5267 156.0458 34.1237 54.7122 -218.9153

14 167 215 112.6073 11.4513 42.7922 55.8002 -296.2293
167 214 98.1487 16.4391 44.4472 61.4282 -453.7857
167 216 82.7299 21.2447 42.3235 56.1501 -96.4655

The criteria are as follows:

urt7 ↔ |Rt| > 105
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(a)          (b)      (c)     (d)  (e) 

(f) 

Fig. 23. The molten pool of type 7. (a)–(d) are two randomly selected molten pool images. (e)
(f)To randomly select a molten pool image for verification.

Table 9. Type 7 of molten pool parameters.

167 233 129.5874 53.8201 56.5308 65.189 5.2882
167 235 132.2024 22.8411 60.4113 66.9672 7.3035
167 228 116.464 89.6201 62.349 68.6604 8.0859

13 171 223 51.5259 9.1902 48.7589 107.4615 66.483
167 221 50.0318 8.2466 37.7043 142.8044 65.2548
171 223 47.8157 5.5634 44.3116 115.0319 23.3683
169 225 45.768 7.6619 42.3871 119.2906 29.0021
167 224 43.5136 3.7836 43.0867 127.8094 31.7932

12 149 209 122.9329 26.4931 33.2848 55.6208 331.5272
13 165 215 82.2734 43.9459 45.9019 60.2076 1325.601

pass W L Rt Rtr Rr Rb Rbr
12 171 225 139.855 50.0167 57.9496 67.6126 12.1555

171 237 155.3976 88.0362 57.2292 70.1374 9.4358

urr7 ↔ 36 <|Rr| < 65

urb7 ↔ 42 <|Rb| < 72

ubt7 ↔ |Rbr| < 15

pc7 ↔ ¬uw ∧ urt7 ∧ urr7 ∧ urb7 ∧ ubt7 (4-7)



78 H. Zhou et al.

5 MLD Classification Model

The MLD system is a system described by interdependent physical laws, logical laws,
andoperational constraints. It transforms the heuristic knowledge, logical judgments, and
constraints that must be observed by the operating objects into the form of propositional
logic, and then the propositional logic It is transformed into linear inequalities containing
integers and continuous variables, thus realizing the integration of qualitative knowledge,
expert experience, logical rules and operating constraints with physical laws.

The MLD model is a powerful tool for expressing hybrid systems. This chapter
introduces the basic principles of MLD and theMLD classification model of multi-layer
and multi-pass welding.

InMLDmodeling means, a binary variable is assigned to each statement. If and only
if the statement is true, the value of the binary variable is true.

xa ≡ True ↔ δa = 1 (5-1)

The general form of the hybrid system based on MLD [34] is shown in (5-2):
⎧
⎪⎨
⎪⎩

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

(5-2)

Where x is the state vector of the system, y is the output variable including continuous
output and logic output, u is the continuous input and logic input. δ and z are logical
and continuous auxiliary variables, respectively. Equation (5-2) includes mixed integer
inequality and operating constraints. E1

, E2
, E3

, E4
, E5 are the matrices of appropriate

dimensions respectively.
After analyzing the characteristics of themulti-layer andmulti-passweld pool image,

the result obtained is seven types of weld bead ((4-1)–(4-7)), then seven logical variables
are introduced to define theMLDweld pool classificationmodel as follows ((5-3)–(5-9)):

[δ1 = 1] ↔ [pc1 = uw] (5-3)

[δ2 = 1] ↔ [pc2=¬uw ∧ urt2 ∧ urr2 ∧ urb2 ∧ ubbt2] (5-4)

[δ3 = 1] ↔ [pc3=¬uw ∧ urt3 ∧ urr3 ∧ urb3 ∧ ubbt3] (5-5)

[δ4 = 1] ↔ [pc4=¬uw ∧ urt4 ∧ urr4 ∧ urb4 ∧ ubbt4 ∧ urtc4 ∧ ubtc4] (5-6)

[δ5 = 1] ↔ [pc5=¬uw ∧ urt5 ∧ urr5 ∧ urb5 ∧ ubbt5] (5-7)

[δ6 = 1] ↔ [pc6=¬uw ∧ urt6 ∧ urr6 ∧ urb6 ∧ ubbt6 ∧ ubtc6] (5-8)

[δ7 = 1] ↔ [pc7=¬uw ∧ urt7 ∧ urr7 ∧ urb7 ∧ ubt7] (5-9)
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6 Conclusions

In this paper, the image segmentation of multi-layer and multi-pass molten pool, cor-
responding forming classification and MLD classification model are studied. Related
works including:

1. Established a multi-layer multi-pass welding pool image acquisition system.
2. The uneven brightness and blurred edges of themolten pool image show the complex-

ity of its edge segmentation. GAC can effectively segment the edges of the molten
pool image, with short detection time and high accuracy. It can also be effectively
segmented under uneven lighting conditions.

3. By analyzing the multi-pass molten pools, the different layers can be divided into 7
categories, and the characteristics of the correspondingmolten pools in each category
have their own characteristics. Through the analysis and summary of the experimen-
tal data, the category assignment is determined, which provides the basis for the
subsequent logical switch of the MLD(mixed logic dynamic) control model.

The significance of multi-layer andmulti-pass weldingMLDmodeling is to simplify
the welding process of the complex robot welding intelligent system into a control
process inwhich logical variables and linear equations interact and automatically switch.
The next step is to establish the differential equations under the conditions of different
types ofmolten pools (layer types), which quantitatively express the thermal inertia in the
multi-layer and multi-pass welding process and use it to control the welding formation.
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Abstract. To obtain desired wood appearance, it is necessary to grind the defects
in the wood veneer. Traditional manual grinding method is time consuming and
laborious. Therefore, the method using industrial robot combined with vision
detection system is proposed to improve the processing efficiency. Based on
the object detection network RetinaNet, the detection model is trained to detect
the defects of different categories in the whole veneer. The pixel coordinates of
detected defects will be transformed into robot coordinates, and PLC uses these
coordinate values to control the robot for grinding. Based on the data set of veneers,
experiments are conducted on the anchor boxes parameters and the weight factor
of Focal Loss. The results show that the model has high recognition accuracy in
the tested veneer data.

Keywords: Veneer defects · Deep learning · Industrial robot · Object detection

1 Introduction

The furniture industry has higher and higher requirements for the quality of wooden
products, the defects in the veneer need to be grinded in the early stage of the process.
In the traditional processing process, it mainly relies on the worker to look for defects
with his eyes and to use a grinding tool for grinding. Long time in such a working
environment will cause visual fatigue and affect worker’s judgment, and the powder
produced by grinding will seriously affect the respiratory health of workers. Therefore,
the vision based grinding system of industrial robots has a good application value, deep
learning algorithms promote the wide application of image processing in this field.

As early as the 1950s, Frank Rosenblatt [1] established the earliest perceptronmodel,
one of the simplest neural networks, which laid a theoretical foundation for the subse-
quent development. With the continuous development of scientific computing technol-
ogy, the multi-layer perceptron model, BP algorithm [2] and other theories also continu-
ously promote the research process of neural network. Around 2010, with the proposal of
SGD [3], the model training method of neural network has been continuously improved,
deep learning research enters a boom. Companies and educational institutions around
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the world are engaged in deep learning research, and the research direction is becom-
ing more diversified. Nowadays, deep learning has been widely applied in the fields of
image recognition, text recognition, Voice recognition and so on. Different from tra-
ditional image processing algorithms that extract features such as edges, corners and
colors from images, deep learning networks generate feature maps of different scales
and depths based on original images through multi-layer convolutional neural networks.
These feature maps represent various abstract features of the original image. With the
deepening of the network level, it can express more image information. Different algo-
rithms use different mechanisms to process features, which can achieve tasks such as
classification of complex images, object detection, and image segmentation [4].

The thickness of the veneer produced after ring cut of the log is only about 0.1 mm,
and there are many types of defects on the surface. Figure 1 shows common defects
such as knot, black line, black line group, and hardwood. Since these defects are formed
naturally, the characteristics of those defects can change vary widely. The traditional
image processing algorithmmay not have good robustness. A study of the defect images
based on deep learning, make full use of the ability of deep neural networks to learn the
abstract features of the target, and improve the generalization ability of the recognition
algorithm. The neural network model is based on RetinaNet, the network structure is
relatively simple, and its unique Focal loss [5] function can reduce the impact of category
imbalance. Using the trained network model to detect the bounding box of the defect
in the picture. According to the grinding method, the bounding box is converted into
grinding points and the it’s pixel coordinates are converted into engineering coordinates.
The coordinates are output to the PLC to control the robot arm to polish the veneer.

(a) knot (b) black line

(c) black line group (d) hardwood

Fig. 1. Different types of veneer defects.

The content of the paper is arranged as follows: First introduce the architecture of
robot detection andgrinding system for veneer defects, including themain hardware units
in the system and the image processing software system. Then the working process of
the system is explained, and the part of image preprocessing and hand-eye calibration are
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introduced in detail. Introduced the principle of RetinaNet used in this study, based on the
RetinaNet algorithm and using the veneer defect dataset for model training experiments.
Finally, the detection model is optimized according to the characteristics of the data set,
and the experimental results are summarized.

2 System Architecture

The system is composed of hardware part and software part. The hardware part includes
grinding platform equipment and industrial robot system, and the software part includes
image processing algorithm and PLC control program. The specific system composition
is shown in Fig. 2, and Table 1 shows the specifications of some equipment.

Fig. 2. System components.

Table 1. Models and specifications of some equipment.

Hardware Specification

Camera Daheng MER-1810-21U3C

PLC Siemens S7–400

Robot arm FANUC M-10IA/8L

Upper computer CPU Intel i5–6500

Memory 8 G

GPU RTX 2080

Because the length of the veneer is very long, it is difficult to take a complete and
clear picture of veneer with a single industrial camera. Therefore, two cameras are used
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to shoot the left and right parts of the veneer at the same time to ensure that the entire
veneer can be captured. In order to make the captured image bright and clear, which is
good for image processing, a strip LED light source is installed above the grinding table
(Fig. 3).

Fig. 3. Camera and light source layout.

Image processing system includes image processing algorithm and GUI (Graphical
User Interface). Because the defect features, which in the picture of veneer, are com-
plex and inconstant. Using traditional image processing methods cannot achieve better
recognition results. Therefore, the image processing algorithm is an object detection
model trained on RetinaNet. For veneer pictures collected from wood manufacturers,
use horizontal flipping, vertical flipping [6] and other methods for data augmentation.
Divide the data into training set and validation set proportionally. Use the training set to
optimize the network parameters and train the optimal network model based on the eval-
uation effect of the validation set. In addition to the network model, the complete image
processing algorithm also includes image preprocessing and coordinate transformation.
The GUI of the image processing system is developed using PYQT [7], the follow-
ing functions are mainly realized: of the image processing system is developed using
PYQT, the following functions are mainly realized: Real-time display of the veneer on
the grinding table and the effect of image processing; display information about defects
that have been identified in the veneer.

3 System Workflow

When the system is actually running, the entire workflow is roughly shown in Fig. 4.
After the camera receives the pulse signal sent by the PLC, it transmits the collected
color image to the upper computer. The pre-processed image is used as the input of the
neural network model, and the output is converted into robot coordinates and sent to the
PLC to control the robot for grinding.
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Fig. 4. Workflow of robot detection and grinding system for veneer defects.

3.1 Image Preprocessing

The image preprocessing process is shown in Fig. 5. The original image collected by
the camera includes the environment outside the veneer range, and the detection object
of the convolutional neural network is the entire picture, so the veneer part of the image
should be cropped first. By observing the data, it can be found that most of the veneer
defect features are related to its image texture information. And the background colors
of different batches of data are also different. In order to remove the influence of the
background colors during the training process, the images are converted into grayscale
images. During the experiment, it was discovered that due to the large resolution of
the images in the training data set, a large number of intermediate parameters would
be generated during the training process. As a result, the training speed slows down
and consumes a lot of video memory, and may even cause the training process to be
interrupted. Under the condition of undistorted, it is necessary to downsample the image
using bilinear interpolation [8].

Fig. 5. Image preprocessing process.
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3.2 Hand-Eye Calibration and Coordinate Transformation

Since the position of the defect in the image is its pixel coordinates, the robot needs to
receive the coordinates of the robot coordinate system during the grinding process. So
after the grinding platform and robot are installed, the robot needs to be calibrated to
find the transformation relationship of the defect from the image to the robot coordinate
system. During the grinding process, the grinding tool at the end of the robotic arm only
needs to work on the surface of the grinding table. Therefore, it is assumed that the XOY
plane in the robot coordinate system is parallel to the grinding table, so the Z of all the
points on the veneer is the same value. In this way, the transformational relation can
be regarded as a coordinate conversion from one plane to another (Fig. 6). Perspective
transformation [9] can project the image on a new picture plane. In this project, the point
(u, v) on the pixel plane is projected to the point (x, y) on the plane of the grinding table.
The transformation is given by the equation:

[
x, y, 1

] = [u, v, 1]
⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ (1)

The calibration process is roughly as follows: mark four points on the veneer and place it
on the grinding table, record the pixel coordinate value of each point.Use theFlexPendant
to control end-of-arm toolingof robot to touches these four points respectively, and record
the robot coordinate value of the marked points. The perspective transformation matrix
M is solved by Eq. 1.

Fig. 6. Schematic diagram of coordinate transformation.

4 Object Detection Algorithm Based on RetinaNet

Object detection is an algorithm that can predict the class of an object and mark the
bounding box of the object in the image, including traditional methods and deep learning
methods. Traditional object detection algorithms are mostly based on sliding window
mechanism for region selection. Algorithms such as SIFT [10] are commonly used to
extract image features, and then classifiers such as SVM [11] are used for classification.
However, this method has high time complexity and is not robust to images with highly
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complex features. In recent years, with the development of deep learning, breakthroughs
have beenmade in the application of object detection.Mainly divided into two categories,
one is a two-stage algorithm based on region proposal; the other is a one-stage algorithm
that uses an end-to-end neural networkmodel to predict category and location at the same
time. One-stage is better than two-stage in recognition speed but not in accuracy. The
RetinaNet neural network used in this paper is a one-stage target detection algorithm. It
uses the focal loss function to successfully solve the “category imbalance” problem in
the one-stage algorithm. Its basic structure is shown in Fig. 7.

Fig. 7. Architecture of RetinaNet.

4.1 FPN

The general object detection algorithm only uses the top-level feature map as the pre-
dicted feature vector. Although this method can obtain rich semantic information in the
picture, it cannot accurately locate objects of different scales. FPN [12] (feature pyramid
networks) samples the image into feature maps of different scales through convolution,
and each feature map can correspond to the object features of different scales in the
image. Based on this feature of RetinaNet, the C3 − C5 layer of the backbone network
ResNet [13] is used as a bottom-up route, and bilinear interpolation is used to upsample
the C5 layer as a top-down route. The 1 × 1 convolution kernel is used to convolve the
C3 − C5 feature maps to reduce its dimension, so that the feature maps of the same
scale of the two routes can be fused, as shown in Fig. 7. P3 − P7 are feature pyramids,
where P6 and P7 are obtained by convolution of C5 and P6 respectively, and the feature
of every scale will be predicted independently.

4.2 Bounding Box Regression

The task of object detection is to identify and locate multiple targets appearing in the
image. Anchor boxes [14] are often used as a benchmark to execute bounding box
regression to determine the predicted bounding box of the final target. Based on a pixel
in the image, a group of anchor boxes with N scale ratios and M aspect ratios can be
listed. For eachW×H feature map output by FPN,W×H×N×Manchor boxes can be
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listed based on the basic area. In the training process, it is necessary to count the anchor
boxes around each sample target, and mark them as a certain category or background
according to the IOU value between anchor box and its nearby target. According to Eq. 2
[14], the offset (tx, ty, tw, th) between the anchor box and the true box is calculated as
the value of backpropagation. For each layer of feature maps output by FPN, connect
two FCN [15], and the dimensions of the feature maps of the output layer are K × A
and 4×A (K is the number of categories, A is the number of anchor boxes). SmoothL1
[16] (Eq. 3) loss function is used for bounding box regression training.

tx = (Gx − Px)

Pw
, ty = (Gy − Py)

Ph
, tw = log

Gw

Pw
, th = log

Gh

Ph
(2)

SmootL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

}
(3)

4.3 Focal Loss Function

In the object detection task, the two-stage algorithm performs better than the one-stage
algorithm in detection accuracy. The reason is that two-stage first uses RPN to find some
unclassified bounding boxes that may include true targets, and then performs bounding
box regression and classification. In the one-stage algorithm, all anchor boxes are used
as training samples, which greatly increases the number of anchor boxes that are easily
classified as negative samples. It will reduce the proportion of positive samples when
calculating loss, so that the model is not optimized in the expected direction. The focal
loss balances this problem by adding weight factor based on the cross-entropy loss
function. The formula is given by the equation [5]:

FL(Pt) = −αt(1 − Pt)
γ log(Pt) (4)

Pt andαt are the estimated probabilities and balance coefficients of each category respec-
tively. When the target is classified wrong during training (Pt→0), the loss is not greatly
affected; on the contrary, it also reduces the influence of easily classified samples on
loss calculation. The model is optimized in the direction of class balance. In this study,
this greatly reduces the impact of a small number of defects on model optimization.

5 Experiments and Analysis

5.1 Experiment by Traditional Image Processing

Before using deep learning algorithms, try to use traditional image processing algorithms
to process picture of veneer. First, adjust the brightness, contrast and gamma parameters
of the picture to make the dark defects in the picture more obvious; then histogram
equalization is used to enhance the global contrast of the image and convert it into a binary
image; finally usemorphological operations [6], closing and corrosion are used to extract
the defects in the image. Figure 8 shows the effect of the image processing channel. For
deep-colored defects, the segmentation effect is considerable. But the contrast color
between knots and background is low, many knots can’t be recognized. In pictures
under different lighting conditions, the segmentation effect is quite different, and the
robustness of the algorithm is poor.
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Fig. 8. Image processing flow of traditional method.

5.2 Experiments Based on RetianNet

(1) Data set and model training

Before the experiment, I used an industrial camera to collect about 400 original
veneer pictures. Analyze the distribution of defects in these pictures, augment image
data by vertical flipping or horizontal flipping. The augmented data set contains 929
images, which are divided into training set and test set at a ratio of 4:1, and the data
is labeled by Labelme [17]. The size of the picture collected by the camera is 4985 ×
3655. In order to save video memory, the data is downsampled to 1/4 of the original size
and Set batch_size to 1. The learning rate changes during training as shown in Eq. 5 and
the curve where the training loss converges to 0 is shown in Fig. 9.

Lr =
{
epoch ∗ 10−5 epoch ≤ 10

0.0001 epoch > 10
(5)

Fig. 9. Convergence of losses from training process

(2) Experiment on anchor boxes

During the training process, there will be cases where the loss of some data is
abnormal.After processing these pictures separately, it is found that the number of anchor
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boxes marked as foreground near the black line defect is small or even zero. Therefore,
it is expected to set reasonable parameters of anchor boxes for the data set through
experiments. In order to enumerate a sufficient number of anchor boxes for each defect
in the data set, the experiment uses different parameters to generation anchor boxes. Keep

scale_ratios as (1, 2
1
3 , 2

2
3 ) and anchor_areas as (20, 40, 80, 160, 320) unchanged, adjust

the aspect_ratios to different combinations. Calculate the average number of the anchor
boxes marked as the class near each defect in each class of defect. The experimental
results are given in Table 2. Experimental results show that only anchor boxes with a
large aspect ratio can be marked as foreground boxes of black line. So set aspect_ratios
to [1, 4, 5], indicates that the aspect ratio of the anchor boxes generated by the RPN
during the training process is 1, 4, and 5. After modification, the loss value dropped
normally during training. And the model can converge quickly.

Table 2. The mean number of anchor boxes near each type of defect.

Aspect_ratios [1/2, 1, 2] [2, 1, 3] [3, 1, 4] [2, 1, 5] [5, 1, 6]
Knot 5.62 7.56 5.46 4.67 3.87

BL1 0.33 2.33 5.27 6.98 5.86

BLG2 9.82 17.08 15.1 11.88 7.28

HW3 9.48 17.51 15.91 11.73 6.44

1 Black line. 2 Black line group. 3 Hardwood.

(3) Experiment on weight factor

When the loss value didn’t decrease during the training process. After testing the
model, it is found that the knots have a good recognition effect. But only a few defects
of other classes can be recognized. From the perspective of data distribution, compared
with other classes of defects, the knot belongs to the category of easy classification. Try
to adjust the weight factor of the focal loss function from 0.25 to 0.3, and retrain the
model. The model is evaluated based on the verification data set. Figure 10 is the PR
curves [18] of the detection results from two experiments. It can be seen from Fig. 10-a
that the knot has a good recognition effect. And Fig. 10-b, c, d show that the number
of other classes of defects recognized has increased significantly. After adjusting α,
the learning performance of the model is significantly better than before. The average
accuracy (AP) detected by the models is shown in Table 3.
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(a) Knot                               (b) Black line

(c) Black line group                           (d) Hardwood

Fig. 10. PR curves of the detection results.

Table 3. Average accuracy of detections.

α AP

Knot BL1 BLG2 HW3 mAP

0.25 0.77 0.34 0.22 0.26 0.40

0.30 0.81 0.41 0.34 0.31 0.47

1 Black line. 2 Black line group. 3 Hardwood.

5.3 Analysis

Experimental results show that, compared with traditional image processing algorithms,
the RetinaNet-based object detection model can effectively classify defects and detect
infrequent defects. For the data set of this study, changing the generation parameters of
the anchor boxes can make the model better training. After adjusting the weight factor
of focal loss, the recognition effect is enhanced for defects with extreme shapes and a
small number. The final detection effect of themodel canmeet the grinding requirements
of the production workshop, and it is deployed to the industrial robot system. For the
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entire image processing channel, the picture after preprocessing and feature extraction is
shown in the Fig. 11. For infrequent and new classes, the model’s generalization ability
can be enhanced by expanding the data set and retraining the model.

(a) Original image. (b) Preprocessed image. 

(c) Feature maps in convolutional (d) Image after detection. 
neural networks. 

Fig. 11. The effect of the picture in the image processing process, (c) is part of the feature maps
of ResNet.

6 System Implementation

The system implements the functions of photographing, identifying and grinding the
veneer. The whole scene of the system is shown in Fig. 12 and the design of GUI is
shown in Fig. 13 When the robot system and the host computer are started, the PLC
control system is also turned on. The operator clicks the “Open System” button in the
GUI, the communication link will be established between the upper computer and PLC
byTCP protocol, and systemwill turn on the camera and load the object detectionmodel.
At the beginning of a grinding period, the camera takes an image of veneer, which will
be preprocesses before input neural network model. Use ResNet to extract feature maps
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and RPN to find high score boxes. The NMS [19] is used to filter out the bounding boxes
of predicted defects. For all bounding boxes of defects, the transformation matrices M1
andM2 need to be used to convert pixel coordinates into robot coordinates. For knots, the
center of the bounding box is used as the grinding point; for other defects, the horizontal
center line of the bounding box is used as the grinding track. Calculate the grinding
points of all defects and send them to the PLC to control the robot arm.

Fig. 12. Full view of system.

Fig. 13. Layout of GUI.

7 Conclusion

For the task of grinding veneer defects in thewood industry, this paper proposes amethod
based on vision detection combined with industrial robot to automatically grind veneer.
Based on the experiments on anchor parameter and the weight factor of focal loss, an
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optimizedmodel for the detection of veneer defectswas obtained, and amethod for hand-
eye calibration using perspective transformation was applied. Then, a complete robot
detection and grinding system for veneer defects was implemented. From the experimen-
tal results, deep learning performs better than traditional methods on detecting veneer
pictures. It has profound significance for the application of intelligent manufacturing to
the wood industry, and proves the effectiveness of deep learning in the industrial field
and its huge development potential.
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